concentrated. The solid product was purified by HPLC (μ-Porasil) to furnish 13 mg (90% overall) of desepoxyasperdiol as an oil: TLC $R_{f} 0.15$ (30% ethyl acetate in hexane); ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 5.46$ (d, $J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32$ (dd, $J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{AB} \mathrm{q}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-1.80$ ($\mathrm{m}, 11 \mathrm{H}$), $1.72(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.56(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.61-1.20$ (m, 4 H ; includes two OH protons); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 145.50$, $138.98,134.04,133.54,129.73,125.55,124.18,113.71,69.41,65.75$, 49.39, 40.21, 35.98, 28.16, 28.08, 24.54, 24.52, 23.19, 15.68, 15.32; IR $\left(\mathrm{CDCl}_{3}\right) 3344,2938,1662,1638,1441,1367,1251,1050,910 \mathrm{~cm}^{-1}$; mass
spectrum, $m / e 305\left(\mathrm{M}^{+}+1\right), 304\left(\mathrm{M}^{+}\right), 286\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 274,256$, $244,217,204,189,175,161,149,136,123,109,100,92,81$ (100%), 69 ; calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$ 304.2402, found 304.2409.

Acknowledgement. We thank the National Institutes of Health (Grant GM-30390) for generous financial support. NSF Grant CHE 81-00240 supported the purchase of the $300-\mathrm{MHz}$ NMR spectrometer. We thank Professor Tadahiro Kato for providing spectra of racemic desepoxyasperdiol.

Studies on the Synthesis of Vitamin $\mathrm{B}_{12} .4$

Robert V. Stevens, ${ }^{\dagger}$ Normand Beaulieu, Wing Hong Chan, Andrej R. Daniewski, Takeshi Takeda, Adrian Waldner, Paul G. Williard, ${ }^{\ddagger}$ and Ulrich Zutter*

Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024. Received May 29, 1985

Abstract: Chiral syntheses of the four precursors (A1-D1) to cobyric acid (1) and their assembly into the triisoxazole 4 are presented.

A novel strategy for the synthesis of cobyric acid (1) (Scheme I) was outlined in previous accounts from this laboratory. ${ }^{1}$ The key feature of this design was the use of a triisoxazole scaffold (e.g., 3 or 4) as a latent synthon for the crucial secocorrin intermediate 2. This Cd complex 2 was used by the Eschenmoser group and undergoes a remarkably stereoselective photochemically induced A/D cycloisomerization. ${ }^{2}$

In an earlier report, an enantiospecific approach to the synthesis of four precursors (A1-D1) from dextro- and levorotatory camphor was described. ${ }^{3}$ Unfortunately, with but one exception (shown in Scheme II), the Tanabe-Eschenmoser fragmentation (e.g., 6 \rightarrow C7), which would have led to the four necessary acetylenes A1-D1, did not occur. Although cyclopentenone oxide 5 fragmented via the epoxyhydrazone 6 to the acetylenic aldehyde C7, the yield was modest and, as will be shown later, racemization took place.
"Nevertheless, the synthesis of the vitamin remained a dream unfulfilled, and as experiment after experiment failed, we thought seriously of abandoning our dream. However, rather than giving up we decided to undertake an entirely different approach". ${ }^{4}$ Herein we describe the syntheses of the four precursors A1-D1 in enantiomerically pure form and their assembly into the triisoxazole 4 via nitrile oxide cycloaddition methodology.

Synthesis of the A Ring. The first five steps of the synthesis remained unchanged from our previous approach ${ }^{3}$ (Scheme III). Starting from (-)-camphor, the C-9 methyl group was functionalized via bromide A3 ${ }^{5.6}$ to the nitrile A4. Sodium borohydride reduction of the keto group gave predominantly the exo-alcohol A5 that was subjected to oxidative fragmentation with ceric ammonium nitrate (CAN) ${ }^{7}$ to afford cyclopentene A6. At this point, we were able to shorten the synthesis by a modified route and homologate the aldehyde side chain to the nitrile A8. This was accomplished by sodium borohydride reduction followed by tosylation and displacement of the tosylate with sodium cyanide in dimethylformamide (DMF). Oxidative ring opening with ozone afforded the crystalline keto aldehyde A9 in 14% overall yield starting from (- -camphor.

As shown in Scheme IV, reductive amination of A9 with dimethylamine and sodium cyanoborohydride ${ }^{8}$ gave the amino ketone A10 in high yield. Oxidation with m-chloroperbenzoic acid

[^0]Scheme I

1: Cobyric acid

3: $R=H \quad X=H$
4: $R=\mathrm{CH}_{3}, X=0$.

Scheme II

(MCPBA) to the N-oxide A11 followed by Cope elimination yielded the keto olefin A12 which was protected as the ethylene

[^1]Scheme III

Scheme IV

ketal A13. The dinitrile was then converted to the corresponding diester A14 by basic hydrolysis and treatment with methyl iodide.

[^2]Scheme V

Scheme VI

(.)-B4R

D2
7
$\downarrow \mathrm{CrO}_{3}$

Scheme VII

$(-)-\mathrm{B4S}$

Ozonolysis of the olefin afforded the aldehyde A15 which was finally treated with hydroxylamine hydrochloride in pyridine to give predominantly the anti-aldoxime A1. The overall yield from (-)-camphor to the A ring precursor A1 was a satisfactory 7\%.
Synthesis of the B and D Rings. Since the quaternary centers at C-7 in B1 and C-17 in D1 have similar substituents of opposite
(8) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.

Figure 1.
Scheme VIII

configuration, the enantiomers of acid B4 (Scheme V) seemed to be appropriate as starting points for both syntheses. Claisen rearrangement of commercially available allylic alcohol $\mathbf{B 2}$ followed by hydrolysis and resolution of the resultant acid B4 with $(+)$ - and $(-)-\alpha$-phenylethylamine afforded (+)-B4R and (-)-B4S. The absolute configuration of the (+)-acid B4R was determined by its transformation to $(+)-(R)-\alpha$-ethyl- α-methylsuccinic acid (10) of known chirality ${ }^{9}$ as shown in Scheme VI.

The synthesis of the \mathbf{B} ring was therefore continued by using the (-)-acid B4S which was converted via the amide B5 to aldehyde B6 (Scheme VII). Homologation to the aldehyde B7 was accomplished by condensation with nitromethane followed by reduction of the double bond and Nef reaction ${ }^{10}$ without purification of the intermediates.

The C-8 propionate side chain was now incorporated via the enamine modification of the Michael addition to methyl acrylate (Scheme VIII). The resulting $1: 1$ mixture of the 8α and β diastereomers B8 was converted directly to the aldoxime B1 (13\% overall yield from B4S). Due to the presence of both syn- and anti-oximes (syn/anti-oxime ratio $\sim 1: 3$ by ${ }^{1} \mathrm{H}$ NMR), B1 was a mixture of four isomers which at first did not crystallize. Finally, after months, the extremely viscous oxime crystallized, and we were gratified to isolate first the pure anti-aldoxime B1 α and from the mother liquor its diastereomer B1 β. The relative configuration at C-8 in B1 α was confirmed via X-ray diffraction analysis as shown in Figure 1. Since it is known from the pioneering synthetic investigations of Eschenmoser and Woodward ${ }^{2,11,12}$ that the

[^3](10) Noland, W. E. Chem. Rev. 1955, 55, 137 and references cited therein.

Scheme IX

Scheme \mathbf{X}

stereochemistry at C-8 can be adjusted later, both diastereomers were suitable for the synthesis of cobyric acid.

The synthesis of the D ring is shown in Schemes IX and X. Esterification of the (+)-acid B4R followed by lithium aluminum hydride (LAH) reduction provided alcohol D3 which was converted to the nitrile D4 via the tosylate. After oxidation with ozone to the aldehyde D5, the C-18 acetate side chain was established via Wittig-Horner reaction. ${ }^{13}$ Introduction of the second chiral center (shown in Scheme X) was accomplished by Michael addition of nitromethane to the α, β-unsaturated ester $D 6,{ }^{14}$ resulting in a $2: 1$ mixture of the diastereomers D7 (by ${ }^{1} \mathrm{H}$ NMR). The major diastereomer D7 β was separated by one crystallization from ether and has, as will be seen later, the desired R configuration on both centers. In order to work out the reaction conditions to the desired target amino acid D1 β, the mother liquor of the nitroester D7 β (D7 $\beta: \mathbf{D 7} \alpha \sim 1: 2$ by ${ }^{1} \mathrm{H}$ NMR) was used first. Reduction of the nitro group with zinc and hydrochloric acid (HCl) followed by basic workup gave the lactam $\mathbf{D 8}$. The enriched

[^4]

diastereomer D8 $\alpha\left(\mathrm{mp} 157-158^{\circ} \mathrm{C}\right.$) was isolated in pure form by crystallization, and its X-ray structure revealed that the tertiary center in D8 α has the S configuration (Figure 1). Acidic lactam opening afforded the extremely water soluble γ-amino acid D1 α. D ring precursor D1 β was finally obtained in the same way by opening lactam $\mathbf{D 8} \beta\left(\mathrm{mp} 115-117^{\circ} \mathrm{C}\right.$). The overall yield from the acid B4R was 4%.

The reduction of the nitro ester $\mathbf{D} 7 \beta$ illustrates how the order of addition of reagents can affect the course of a reaction. If the zinc is added first followed by slow addition of HCl , the reduction stops at the hydroxylamine which cyclizes to the hydroxamic acid D9.

Synthesis of the \mathbf{C} Ring. In our first approach to the synthesis of the four precursors A1-D1, ${ }^{3}$ the C ring was the one exception which could be prepared via the originally planned fragmentation pathway (Scheme II). This quite long synthesis with its modest overall yield caused us to investigate an alternate method of preparing the acetylenic oxime $\mathbf{C 1}$ (Scheme XI). Starting from commercially available alcohol C2, the chloride $\mathbf{C 3}$ was prepared according to a procedure reported by Hennion. ${ }^{15}$ The alkylation of $\mathbf{C 3}$ with ethyl cyanoacetate and subsequent decarboethoxylation of $\mathbf{C 4}$ as well as the reduction of nitrile C5 to the aldehyde C6 with diisobutylaluminum hydride (DIBAL-H) was employed earlier in our laboratories. ${ }^{16.17}$ Introduction of the $\mathrm{C}-13$ propionate side chain via enamine Michael addition afforded acetylenic aldehyde $\mathbf{C} 7$ in 17% overall yield from alcohol $\mathbf{C 2}$. The second part of the C ring synthesis is shown in Scheme XII. Conversion of

[^5]Scheme XIII

the aldehyde $\mathbf{C 7}$ to the oxime $\mathbf{C 1}$ followed by saponification afforded the racemic acid C8 which was resolved with $(-)-\alpha-$ phenylethylamine. Since the recrystallization of the ammonium salt $\mathbf{C 9}$ caused a change in the syn/anti-oxime ratio during the resolution, the optical rotation $[\alpha]^{25}$ of the oxime $\mathrm{C} 1 \alpha$ was not an appropriate measure for its optical purity. Therefore, small samples of the different fractions of $\mathbf{C 9}$ were converted to the nitrile $\mathbf{C 1 0}$, and its $[\alpha]^{25}$ was determined. The resolution was deemed complete as soon as further recrystallizations did not improve the optical purity of $\mathbf{C 1 0}\left(0^{\circ} \geq[\alpha]^{25} \geq-65.7^{\circ}\right)$. Proof for the sufficient resolution ($>95 \%$) of the C ring precursor C1 α is the fact (as will be seen later) that the combination of C with the D ring gave the "southern half" $\mathbf{C D}$ as a pure diastereomer. To determine the absolute configuration of $\mathbf{C 1 0}$, optically active aldehyde $\mathbf{C 7}$, synthesized from (-)-borneol via the fragmentation pathway (Scheme II), was converted to the nitrile C10. Its $[\alpha]{ }^{25}{ }_{D}$ -8.5° showed that the resolved oxime C1 α has the desired $\stackrel{D}{S}$ configuration. The smaller absolute specific rotation revealed that racemization occurred during the boron trifluoride catalyzed fragmentation ($6 \rightarrow C 7$, Scheme II).

Synthesis of the "Northern Half" AB. Due to the bulky α substituents, nitrile oxide A16 (Scheme XIII) proved to be less reactive than other tertiary examples and therefore more stable. Chlorination of the oxime A1 with N-chlorosuccinimide (NCS) in DMF at $40^{\circ} \mathrm{C}$ gave the hydroxamoyl chloride A16a which was converted to A 16 by elimination of HCl with triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$). The chromatographed nitrile oxide A16 which was stable at room temperature for weeks showed a characteristic IR absorption at $2290 \mathrm{~cm}^{-1}$ and reacted with phenylacetylene as expected to give $\mathbf{A P h}$. The cycloaddition of A16 to the sterically more hindered acetylene B1 α (and B1 β) required special conditions: high concentration of reactants ($1.0-0.5 \mathrm{M}$), long reaction time (6 days), and warming. Under these conditions, the northern half $\mathrm{AB} \alpha$ (and $\mathrm{AB} \beta$) was obtained in about 95% yield.

The initial plan was to construct the triisoxazole 3 according to the clockwise approach ${ }^{\text {ld }}$ via the diisoxazole ABC α. In order to work out the conditions for the nitrile oxide generation, $\mathrm{AB} \alpha$ was added to the more reactive phenylacetylene first. The method employed for A16 utilizing NCS/DMF/ $\mathrm{Et}_{3} \mathrm{~N}$ failed, and the N-bromosuccinimide/ $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMF}\left(0^{\circ} \mathrm{C}\right)$ procedure ${ }^{16}$ gave only small amounts of disoxazole ABPh α. As will be seen below, the instability of the hydroxamoyl chloride of $\mathbf{A B}$ was responsible for these unexpected difficulties. Therefore, a new method for the

Scheme XIV

$t \cdot \mathrm{BuOCl}_{1}-78^{\circ}$
CD. 25°

4 α (4 $\underline{\beta}$)
low-temperature chlorination of aldoximes was worked out. tert-Butyl hypochlorite (t - BuOCl$)^{18}$ in methylene chloride (C$\mathrm{H}_{2} \mathrm{Cl}_{2}$) proved to be the ideal reagent and reacted at $-78^{\circ} \mathrm{C}$ to give the hydroxamoyl chloride of AB. The ensuing elimination of HCl had to be carried out at low temperature $\left(-78^{\circ} \mathrm{C}\right)$; otherwise little or no nitrile oxide was formed. The presence and decay of the AB nitrile oxide was analyzed by IR spectroscopy at room temperature (the half-life of the nitrile oxide in the reaction mixture is about 1.5 days). Using this procedure, the diisoxazole ABPh α was isolated in about 60% yield. While the nitrile oxide of $\mathbf{A B} \alpha$ could also be added to tert-butylethylene, many attempts to add it to the C ring acetylene $\mathbf{C l} \alpha$ failed despite high concentration and large excess ($4-20$-fold) of the acetylene component. Besides the recovery of nearly all the C ring, me-dium-pressure liquid chromatography (MPLC) of the complicated mixture yielded unidentified high molecular compounds and very little ($<5 \%$), impure diisoxazole ABC α (by ${ }^{1}{ }^{1}$ NMR and IR). Due to these difficulties, the plan to synthesize the triisoxazole 3 via the diisoxazole $\mathrm{ABC} \boldsymbol{\alpha}$ was abandoned in favor of the approach via the "northern half" and "southern half".

Synthesis of the "Southern Half" CD. We had planned originally to incorporate the D ring into the triisoxazole 3 and therefore into the "southern half" CD in the form of the amino acid D1B. The anticipation of troublesome isolations of the products from amino acid mixtures caused us to work with the γ-nitro ester D7 β instead and to postpone the reduction of the nitro group.

Chlorination of the aldoxime $\mathbf{C 1} \alpha$ to give the hydroxamoyl chloride C 11 could be accomplished by either t - $\mathrm{BuOCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ or NCS/DMF at $40^{\circ} \mathrm{C}$ (Scheme XIV). In order to suppress the cycloaddition to itself, the nitrile oxide was generated with $\mathrm{Et}_{3} \mathrm{~N}$ in the presence of a 3-fold excess of D7 β which could be recovered after the reaction by chromatography. The pure diastereomer CD (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) was isolated as an extremely viscous oil in 57% overall yield from the ammonium salt C9.

Linkage of the Northern with the Southern Half: Triisoxazole 4. The nitrile oxide of $\mathbf{A B} \alpha$ (and $\mathbf{A B} \beta$) was generated as described above with t - $\mathrm{BuOCl} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ and reacted with a 3 -fold excess of the acetylene $\mathbf{C D}$ at room temperature for 2.5

[^6]days. The triisoxazole 4α (and 4β) was isolated by chromatography on silica with benzene-pyridine $9: 1$ and $7: 1$ as eluents in about 30% yield. The spectroscopic data, NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$), IR, and fast atom bombardment MS (MH^{+}1071), confirmed the structure shown in Scheme XIV.

In conclusion, this report describes the successful construction of the triisoxazole skeleton 4 which incorporates all the appropriate functionality for conversion to the Eschenmoser intermediate 2. The four precursors to this skeleton were synthesized in a concise and enantioselective manner and were then connected via a nitrile oxide cycloaddition onto an acetylenic moiety. Although it is as yet a "dream unfulfilled", very significant progress has been made toward this goal, and the feasibility of the approach has clearly been demonstrated. It is hoped that further studies will be undertaken.

Experimental Section

Melting points determined in glass capillaries and boiling points are uncorrected. Infrared (IR) spectra were obtained on a Beckman spectrophotometer IR-4210. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker WP 200 spectrometer at 200 and 50 MHz , respectively, using tetramethylsilane as an internal standard (chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (J) are given in hertz). High-resolution mass spectra were measured on an AET Kratos MS 902. Combustion analyses were done by Spang Microanalytical Laboratory, Eagle Harbor, MI. All chromatographies were done with Merck silica gel 60 ($70-230$ mesh).

3-[(1R,2S)-2-(Cyanomethyl)-2,3-dimethylcyclopent-3-en-1-yl]propionitrile (A8). To the campholenaldehyde A6 ($17.7 \mathrm{~g}, 0.1 \mathrm{~mol}$) in methanol (250 mL) $\mathrm{NaBH}_{4}(3.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added at $0^{\circ} \mathrm{C}$ over 20 min . Stirring was continued at $25^{\circ} \mathrm{C}$ for 1 h , the mixture neutralized with $\mathrm{AcOH}(6 \mathrm{~mL})$, and the solvent removed by rotary evaporation. The residue was treated with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 100 \mathrm{~mL})$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to give the crude alcohol A7. It was dissolved in pyridine (200 mL), and tosyl chloride ($38.0 \mathrm{~g}, 0.2 \mathrm{~mol}$) in pyridine (100 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was maintained at that temperature for 5 h and then at 25 ${ }^{\circ} \mathrm{C}$ for 2 h (at higher temperature, some chloride was formed). The excess of tosyl chloride was hydrolized with ice (100 g) and after stirring for 2 h , the mixture was poured into $4 \mathrm{~N} \mathrm{HCl}(1.5 \mathrm{~L})$. Extraction with ether ($5 \times 200 \mathrm{~mL}$) afforded after drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporation (VRE) the crude tosylate. It was dissolved in DMF (250 mL) containing pulverized $\mathrm{NaCN}(15 \mathrm{~g}, 0.3 \mathrm{~mol})$, stirred at $20^{\circ} \mathrm{C}$ overnight, and then poured into water (1.2 L). The precipitate was filtered and recrystallized from ether-hexane to give pure dinitrile $\mathbf{A 8}(15.5 \mathrm{~g}, 82.4 \%): \mathrm{mp} 58-59.5$ ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-29.02^{\circ},[\alpha]^{25}{ }_{435}-56.33^{\circ}$ (c $6.98, \mathrm{CHCl}_{3}$); IR (KBr) 3040 $(\mathrm{H}-\mathrm{C}=), 2240(\mathrm{C}=\mathrm{N}), 1655 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 0.98 ($\mathrm{s}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{3} \mathrm{C}$), $1.50-2.60\left(\mathrm{~m}, 10 \mathrm{H}, \quad \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 5.42(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}-)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.59,124.26,119.24,117.80,49.01,46.29,34.65$, 26.82, 25.86, 17.85, 15.83, 12.14; MS (EI), m / z 188.1318, calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2}$ 188.1315.
($4 \boldsymbol{R}, 5 S$)-5-(Cyanomethyl)-4-(formylmethyl)-5-methyl-6-oxoheptanenitrile (A9). The dicyanide A8 ($18.8 \mathrm{~g}, 0.1 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and methanol (50 mL) was ozonized at $-78^{\circ} \mathrm{C}$ until the blue color appeared. The reaction mixture was swept with N_{2} for 1 h , and then $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}(50 \mathrm{~mL})$ was added. The mixture was allowed to warm up to $25^{\circ} \mathrm{C}$ and stirred overnight. After removing the solvents, the $\mathrm{P}(\mathrm{OC}-$ $\left.\mathrm{H}_{3}\right)_{3}$, and the $\mathrm{PO}\left(\mathrm{OCH}_{3}\right)_{3}$ by rotary evaporation on the high vacuum, the oily residue was crystallized by adding ether (100 mL) to give the colorless keto aldehyde A9 (19.8 g, 90\%): mp $83-84^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+4.88^{\circ}$, $[\alpha]^{25}{ }_{435}+20.57^{\circ}\left(c 5.22, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 2840 and $2730(\mathrm{CHO}), 2240$ and $2230(2 \times \mathrm{C} \equiv \mathrm{N}), 1720$ and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$, aldehyde and ketone); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.40-1.75(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}-\mathrm{CN}$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.25-3.00\left(\mathrm{~m}, 7 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CN}\right.$, $\mathrm{CHCH}_{2} \mathrm{CO}$), $9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 208.72(\mathrm{C}=\mathrm{O}$, ketone), 199.44 (CHO), 118.87 (CN), 117.79 (CN), $52.94,44.29,35.51$, 27.67, 25.35, 21.97, 20.52, 15.97; MS (EI), $m / z 177.1032$ ($\mathrm{M}^{+}-43$), caled for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}\right)$ 177.1092.
($4 R, 5 S$)-5-(Cyanomethyl)-4-[2-(dimethylamino)ethyl]-5-methyl-6oxoheptanenitrile (A10). The keto aldehyde A9 ($22.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added to a mixture of dimethylamine hydrochloride ($16.0 \mathrm{~g}, 0.196 \mathrm{~mol}$), sodium acetate ($13.0 \mathrm{~g}, 0.158 \mathrm{~mol}$), and sodium cyanoborohydride (60%) $(15.0 \mathrm{~g}, 0.143 \mathrm{~mol})$ in methanol $(500 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h while the pH was adjusted with AcOH to 7-8. Acetone (50 mL) was added to the mixture and then 5 N HCl until the pH was $2-1$. The solvent was removed by rotary evaporation and the residue dissolved in water (150 mL) and extracted with ether $(3 \times 100 \mathrm{~mL})$. The aqueous layer was alkalized with NaOH to liberate the amine and ex-
tracted again with ether ($6 \times 100 \mathrm{~mL}$). The combined ether layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and the solvent evaporated (VRE) to give the amino ketone A10 ($24.0 \mathrm{~g}, 96.7 \%$) which was used without further purification for the next step: IR (film) 2820 and 2770 (s, Bohlmann bands), 2240 $(\mathrm{m}, \mathrm{C} \equiv \mathrm{N}), 1705 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.15-2.75(\mathrm{~m}, 11$ H).
($\mathbf{4 R}, 5 S$)-5-(Cyanomethyl)-5-methyl-6-ox0-4-vinylheptanenitrile (A12). A solution of $80 \% m$-chloroperbenzoic acid ($13 \mathrm{~g}, 0.06 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) was added at $0^{\circ} \mathrm{C}$ to the amino ketone $\mathrm{A} 10(15.0 \mathrm{~g}, 0.06 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (400 mL) and the reaction mixture was stirred for 1 h . Diazomethane in ether was added to transform the m-chlorobenzoic acid into the methyl ester, and the solvents were removed by rotary evaporation. The residue was triturated with pentane to wash out the methyl m-chlorobenzoate. The resultant crude N-oxide A11 was dissolved in $\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{~mL})$ and benzene $(80 \mathrm{~mL})$, and the reaction mixture was heated-while benzene with some water and dimethylhydroxylamine was distilled off-until the temperature of the reaction mixture reached 110 ${ }^{\circ} \mathrm{C}$. After cooling down, the mixture was poured into brine (500 mL) and extracted with ether ($6 \times 100 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation (VRE), the residue was chromatographed on silica using ethyl acetate-hexane 1:2 as an eluent to afford the olefin A12 (9.3 g, 75.6%) which crystallized upon standing: $\mathrm{mp} 45-46^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+38.99^{\circ}$, $[\alpha]^{25}{ }_{435}+128.44^{\circ}\left(c 8.40, \mathrm{CHCl}_{3}\right)$; IR (film) $3075(\mathrm{w}, \mathrm{H}-\mathrm{C}=), 2245$ $(\mathrm{m}, \mathrm{C} \equiv \mathrm{N}), 1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.42-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.10-2.75\left(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}\right), 5.25-5.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 208.66(\mathrm{C}=\mathrm{O}), 133.28,122.54(\mathrm{C}=\mathrm{C}), 118.77$ (C $\equiv \mathrm{N}), 117.84(\mathrm{C} \equiv \mathrm{N}), 52.45,49.51,25.83,25.12,22.25,21.42,15.61$; MS (EI), m / z 204.1260, calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} 204.1264$.

Ethylene Ketal of ($4 R, 5 S$)-5-(Cyanomethyl)-5-methyl-6-oxo-4-vinylheptanenitrile (A13). The mixture of the keto olefin A12 (5.1 g, 25 $\mathrm{mmol})$, ethylene glycol (5 mL), benzene (400 mL), and $\mathrm{TsOH}(150 \mathrm{mg})$ was refluxed by using a Dean-Stark adapter for 20 h . After cooling, 1 mL of pyridine was added, and the reaction mixture was washed with brine $(3 \times 20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated (VRE). Chromatography of the residue on silica (ethyl acetate-hexane 1:4) afforded the pure ketal A13 ($5.5 \mathrm{~g}, 90.6 \%$) as a colorless oil: $[\alpha]^{25}{ }_{D}-13.71^{\circ},[\alpha]^{25}{ }_{435}-26.04^{\circ}\left(c 5.10, \mathrm{CHCl}_{3}\right)$; IR (film) $3070\left(\mathrm{w}, \mathrm{H}-\mathrm{C}=\right.$), $2240(\mathrm{~m}, \mathrm{C}=\mathrm{N}), 1630 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.19$ and 1.31 (s, each $\left.3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.40-2.60(\mathrm{~m}$, 7 H), $3.90-4.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.10-5.80\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 135.98,120.18,119.46,119.19,112.77,65.08$, 63.53, 49.56, 46.02, 24.98, 21.76, 20.26, 19.39, 15.86; MS (EI), m / z $189.1016\left(\mathrm{M}^{+}-59\right)$, calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ 189.1029.

Ethylene Ketal of Methyl (4R,5S)-5-[(Methoxycarbonyl)methyl]-5-methyl-6-oxo-4-vinylheptanoate (A14). The mixture of the dinitrile A13 $(5.0 \mathrm{~g}, 20 \mathrm{mmol}), \mathrm{NaOH}(15.0 \mathrm{~g})$, ethylene glycol (15 mL), $\mathrm{H}_{2} \mathrm{O}(25$ mL), and MeOH (50 mL) was heated, and MeOH was distilled off until the temperature of the mixture reached $110^{\circ} \mathrm{C}$. The mixture was refluxed for 75 h until no more ammonia could be detected with pH paper. The mixture was cooled down, DMF (150 mL) and methyl iodide (40 mL) were added, and the reaction mixture was stirred overnight at 25 ${ }^{\circ} \mathrm{C}$. After the addition of water (400 mL), the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvents were removed by rotary evaporation. The residue was chromatographed on silica (ethyl acetate-hexane 1:4) to give the pure diester A14 ($5.0 \mathrm{~g}, 78.5 \%$) as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+0.98^{\circ}$, $[\alpha]^{25}{ }_{435}+5.65^{\circ}\left(c, 4.60, \mathrm{CHCl}_{3}\right)$; IR (film) $3070(\mathrm{w}, \mathrm{H}-\mathrm{C}=), 1735(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}$), $1635 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.16$ and 1.27 (s , each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 1.30-2.60 (m, 7 H), 3.62 and 3.65 (s , each 3 H , $\left.2 \times \mathrm{OCH}_{3}\right), 3.70-4.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.90-5.70(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.34,173.35(2 \times \mathrm{C}=\mathrm{O}), 138.47$, $117.56(\mathrm{C}=\mathrm{C}), 113.76(\mathrm{O}-\mathrm{C}-\mathrm{O}), 64.84,63.29,51.34,51.13,50.42$, 47.79, 36.52, 32.58, 24.19, 21.11, 19.34; MS (EI), $m / z 314.1724$, calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} 314.1729$.

Ethylene Ketal of Methyl (4S,5S)-4-Formyl-5-[(methoxycarbonyl)-methyl]-5-methyI-6-oxoheptanoate (A15). The olefin A14 (3.14 g, 10 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 1:1 (50 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was bubbled into the solution through a glass tube at $-78^{\circ} \mathrm{C}$ until a blue color was detected ($\sim 1 \mathrm{~h}$). The reaction mixture was swept with N_{2} for 1 h and then $\left(\mathrm{CH}_{3} \mathrm{O}\right){ }_{3} \mathrm{P}(10 \mathrm{~mL})$ was added. The mixture was allowed to warm up to $25^{\circ} \mathrm{C}$ and stirred overnight. After removing the solvents and the excess of $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} P$ by rotary evaporation under high vacuum, the residue was chromatographed on silica (EtOAc/hexane $1: 3$) to afford the oily aldehyde A15 ($3.00 \mathrm{~g}, 95 \%$): $[\alpha]^{25} \mathrm{D}+31.03^{\circ},[\alpha]^{25}{ }_{435}+72.91^{\circ}(c$ 9.12, CHCl_{3}); IR (film) 2840 and 2740 (CHO), 1730 ($\mathrm{C}=\mathrm{O}$, ester), $1705 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$, aldehyde); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.26$ and 1.32 (s, each $\left.3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.70-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31(\mathrm{t}, J=7.7,2 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{CO}$), 2.49 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.50-2.65 (m, 1 H, CH), 3.65 and 3.66 (s, each $3 \mathrm{H}, 2 \times \mathrm{OCH}_{3}$), 3.70-4.00 (m, $\left.4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 9.49(\mathrm{~d}, \mathrm{~J}$ $=5.1,1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.91(\mathrm{CHO}), 173.61$ and $171.47\left(\mathrm{C}=\mathrm{O}\right.$, ester), $112.87(\mathrm{O}-\mathrm{C}-\mathrm{O}), 64.92$ and $63.33\left(\mathrm{OCH}_{2} \mathrm{C}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 53.15$ and $51.52\left(2 \times \mathrm{OCH}_{3}\right), 48.87,40.06,31.98,19.73,1928$, 18.48; MS (EI), $m / z 301.1290\left(\mathrm{M}^{+}-15\right)$, calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right.$$\left.\mathrm{CH}_{3}\right) 301.1287$.

Oxime A1. To $\mathrm{HONH}_{2} \cdot \mathrm{HCl}(0.87 \mathrm{~g}, 12.5 \mathrm{mmol})$ in pyridine (10 mL) was added the aldehyde $\mathbf{A 1 5}$ ($3.16 \mathrm{~g}, 10 \mathrm{mmol}$) in pyridine (5 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and overnight at $25^{\circ} \mathrm{C}$. It was then diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50$ mL) and brine (25 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. Filtration through silica with EtOAc/ hexane $1: 1$ afforded predominantly ($>95 \%$, by ${ }^{1} \mathrm{H}$ NMR) the anti-oxime A1 ($3.2 \mathrm{~g}, 96 \%$) as an extremely viscous oil: $[\alpha]^{25}{ }_{D}+28.66^{\circ},[\alpha]^{25}{ }_{435}$ $+57.42^{\circ}\left(c 6.50, \mathrm{CHCl}_{3}\right)$; IR (film) $3500-3200(\mathrm{br}, \mathrm{OH}), 1735 \mathrm{~cm}^{-1}(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15$ and 1.29 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $1.50-2.70(\mathrm{~m}, 7 \mathrm{H}), 3.64$ and $3.66\left(\mathrm{~s}\right.$, each $\left.3 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.80-4.00$ (m, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 7.32 (d, $J=9.2,1 \mathrm{H}, \mathrm{HC}=\mathrm{N}$, anti-oxime), 7.70 (br s, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.96$ and $172.52(\mathrm{C}=\mathrm{O})$, $153.18(\mathrm{C}=\mathrm{N}), 113.19(\mathrm{O}-\mathrm{C}-\mathrm{O}), 64.38$ and $64.25\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 51.58 and $51.42\left(\mathrm{OCH}_{3}\right), 47.94,44.05,38.40,32.17,23.05,19.57,19.06$; MS (EI), $m / z 282.1367\left(\mathrm{M}^{+}-49\right)$, calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{5}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ - OCH_{3}) 282.1342.

Ethyl 3-Methyl-3-vinyl-4-pentynoate (B3). In a 12 L flask with a Dean-Stark trap and a reflux condensor, freshly distilled trans-3-methyl-2-penten-4-yn-1-ol (B2) ($577 \mathrm{~g}, 6 \mathrm{~mol}$, Fluka), triethyl orthoacetate ($3410 \mathrm{~g}, 21 \mathrm{~mol}$), DMF (4.5 L), and propionic acid ($42 \mathrm{~g}, 0.6$ mol) were mixed and refluxed for 6 days. Every day, 300 mL solvent was distilled off and propionic acid ($9 \mathrm{~g}, 0.12 \mathrm{~mol}$) was added. After cooling down to $25^{\circ} \mathrm{C}$, water (6 L) was added and the upper layer was separated (the workup was done in three parts). The aqueous layer was extracted with ether ($3 \times 1.5 \mathrm{~L}$) and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 1.5 \mathrm{~L})$, saturated $\mathrm{NaHCO}_{3}(600 \mathrm{~mL})$, and brine (300 mL). After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), the ether was removed by rotary evaporation and the excess of triethyl orthoacetate was recovered by distillation through a $50-\mathrm{cm}$ Vigreux column at reduced pressure (bp \sim $60^{\circ} \mathrm{C} / 30$ torr). Then, the ethyl ester B3 ($704 \mathrm{~g}, 71 \%$) was distilled over at $93-95^{\circ} \mathrm{C} / 30$ torr: IR (film) 3290 (s, $\mathrm{H}-\mathrm{C} \equiv$), 3080 (w, H-C=), $2110(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.26\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}-\mathrm{O}\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{HC} \equiv$), $2.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.15\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.11$ (dd, $\left.J_{1}=10, J_{2}=1, \mathrm{H}_{\mathrm{a}}\right), 5.42\left(\mathrm{dd}, J_{1}=17, J_{2}=1, \mathrm{H}_{\mathrm{b}}\right), 5.87\left(\mathrm{dd}, J_{1}=17\right.$, $\left.J_{2}=10, \mathrm{H}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.07\left(\mathrm{C}_{1}\right), 141.43$ $(-\mathrm{HC}=), 113.73\left(\mathrm{H}_{2} \mathrm{C}=\right), 86.56\left(\mathrm{C}_{4}\right), 71.75\left(\mathrm{C}_{5}\right), 60.36\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $46.19\left(\mathrm{C}_{2}\right), 36.71\left(\mathrm{C}_{3}\right), 27.61\left(\mathrm{CH}_{3}\right), 14.27\left(\mathrm{CH}_{3} \mathrm{C}-\mathrm{O}\right)$; MS (EI) m / z 166.0987, calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} 166.0994$.

3-Methyl-3-vinyl-4-pentynoic Acid (B4). $\mathrm{NaOH}(320 \mathrm{~g}, 8 \mathrm{~mol})$ was dissolved in 30% ethanol-water (4 L) and added to the ester B3 (665 g , 4 mol). After stirring at $25^{\circ} \mathrm{C}$ overnight, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$ and extracted with ether $(2 \times 1 \mathrm{~L})$. The aqueous solution was acidified with $2 \mathrm{~N} \mathrm{HCl}(4.4 \mathrm{~L}$) and extracted with ether (3 $\times 1 \mathrm{~L})$. The extract was washed with water ($2 \times 400 \mathrm{~mL}$) and brine $(200 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the ether was removed by rotary evaporation. Distillation afforded the pure acid B4 ($515 \mathrm{~g}, 93 \%$): bp $73-75^{\circ} \mathrm{C} / 0.2$ torr; IR (film) 3400-2500 (br, OH), 3290 (s, H-C \equiv), $1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), 2.37 (s, $1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), $2.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.13\left(\mathrm{dd}, J_{1}=10\right.$, $\left.J_{2}=1, \mathrm{H}_{\mathrm{a}}\right), 5.45\left(\mathrm{dd}, J_{1}=17, J_{2}=1, \mathrm{H}_{\mathrm{b}}\right), 5.88\left(\mathrm{dd}, J_{1}=17, J_{2}=10\right.$, $\mathrm{H}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$) $10.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{3}{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $176.61\left(\mathrm{C}_{1}\right), 140.99(-\mathrm{CH}=), 114.12\left(\mathrm{H}_{2} \mathrm{C}=\right), 86.25\left(\mathrm{C}_{4}\right), 71.95\left(\mathrm{C}_{5}\right)$, $46.03\left(\mathrm{C}_{2}\right), 36.42\left(\mathrm{C}_{3}\right), 27.52\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 138.0681$, calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} 138.0681$.

Resolution of Racemic Acid B4 with (+)- α-Phenylethylamine: (-)B4S. (+)- α-Phenylethylamine $\left(606 \mathrm{~g}, 5 \mathrm{~mol}\right.$, Aldrich, $[\alpha]^{25}{ }_{\mathrm{D}}+38.1$, neat) was added to the acid B4 ($691 \mathrm{~g}, 5 \mathrm{~mol}$) in 2-propanol ($7.8 \mathrm{~L} \equiv 6$ mL per g of salt). The solution was allowed to cool down to $25^{\circ} \mathrm{C}$ and then cooled overnight to $-20^{\circ} \mathrm{C}$. The salt precipitate was filtered and dried. After 30 recrystallizations using the same ratio of solvent per gram of salt, the diastereomeric purity of the salt ($188 \mathrm{~g}, 29 \%$) was $97.5 \pm 2 \%$ [the diastereomeric purity was calculated from the heights of the acid methyl singlets ($200-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) referring to the RS salt ($\delta 1.26$) and its diastereomer ($\delta 1.29$)]. The melting point rose only by $4^{\circ} \mathrm{C}$ from 138-139 to $142-143{ }^{\circ} \mathrm{C}$.

The diastereomeric salt ($188 \mathrm{~g}, 0.725 \mathrm{~mol}$) in $2 \mathrm{~N} \mathrm{HCl}(1.45 \mathrm{~L})$ was extracted with ether ($4 \times 150 \mathrm{~mL}$). The combined ether layer was washed with brine ($2 \times 25 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. Distillation afforded the (-)-acid B4S ($99.2 \mathrm{~g}, 29 \%$) in $\sim 95 \%$ optical purity: bp $73-75^{\circ} \mathrm{C} / 0.2$ torr; $[\alpha]^{25}{ }_{D}$
$\left.-23.00^{\circ},[\alpha]^{25}{ }_{435}-48.42^{\circ}(c) 15.68, \mathrm{CHCl}_{3}\right)$.
The water layer was basified carefully under stirring with NaOH (130 g) and the cold solution was extracted with ether ($4 \times 150 \mathrm{~mL}$). The combined ether layers were washed with brine ($2 \times 25 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removing the solvent (VRE), the residue was distilled to give the recovered (+)- α-phenylethylamine ($86.1 \mathrm{~g}, 98 \%$): bp 84-85 ${ }^{\circ} \mathrm{C} / 20$ torr.

The same procedures were applied to recover the acid and the amine from the mother liquors.

Resolution of Racemic Acid B4 with (-)- α-Phenylethylamine: (+)B4R. The acid B4 ($691 \mathrm{~g}, 5 \mathrm{~mol}$) was resolved with (-) - α-phenylethylamine ($606 \mathrm{~g}, 5 \mathrm{~mol}$) to give the (+)-acid B4R ($100.3 \mathrm{~g}, 29 \%$) in $\sim 95 \%$ optical purity (according to the procedure for (-)-B4S): $[\alpha]^{25}$ $+23.08^{\circ},[\alpha]^{25}{ }_{435}+47.56^{\circ}\left(c \quad 10.84, \mathrm{CHCl}_{3}\right)$.
(\boldsymbol{S})- $\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-3-methyl-3-vinyl-4-pentynamide (B5). The (-)acid B4S ($138.2 \mathrm{~g}, 1 \mathrm{~mol}$) and thionyl chloride ($178.5 \mathrm{~g}, 1.5 \mathrm{~mol}$) were refluxed until the gas evolution stopped (1 h at a bath temperature of 100 ${ }^{\circ} \mathrm{C}$). After cooling, the excess of thionyl chloride was removed by rotary evaporation, and the crude acid chloride in absolute ether (500 mL) was added to dimethylamine ($113 \mathrm{~g}, 2.5 \mathrm{~mol}$) in absolute ether (500 mL) at $-40^{\circ} \mathrm{C}$ over 0.5 h . After stirring the reaction mixture for 1 h at $0^{\circ} \mathrm{C}$, the excess of the amine and its salt were extracted with $2 \mathrm{~N} \mathrm{HCl}(500$ $\mathrm{mL})$. The aqueous layer was extracted with ether $(2 \times 500 \mathrm{~mL})$ and the organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and brine (100 mL). After the combined ether layers $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ were dried, the solvent was removed (VRE) and the residue distilled to give the amide B5 (155 g , 94%) as a colorless oil: bp $69-70^{\circ} \mathrm{C} / 0.5$ torr; $[\alpha]^{25}{ }_{\mathrm{D}}-12.27^{\circ},[\alpha]^{25}{ }_{435}$ $-24.50^{\circ}\left(c 14.31, \mathrm{CHCl}_{3}\right)$; IR (film) 3290 and $3230(\mathrm{~m}, \mathrm{HC} \equiv$), 3080 ($\mathrm{w}, \mathrm{HC}=$) $, 2100(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1640 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.49$ (s, 3 H, CH3 C), 2.35 (s, $1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), $2.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95$ and $3.05\left(\mathrm{~s}\right.$, each $\left.3 \mathrm{H}, \mathrm{NMe}_{2}\right), 5.09\left(\mathrm{dd}, J_{1}=10, J_{2}=1, \mathrm{H}_{\mathrm{a}}\right), 5.43(\mathrm{dd}$, $J_{1}=17, J_{2}=1, \mathrm{H}_{\mathrm{b}}$), 5.96 (dd, $\left.J_{1}=17, J_{2}=10, \mathrm{H}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.49\left(\mathrm{C}_{1}\right), 142.23(-\mathrm{CH}=), 113.09\left(\mathrm{H}_{2} \mathrm{C}=\right), 87.46$ $\left(\mathrm{C}_{4}\right), 71.50\left(\mathrm{C}_{5}\right), 43.79\left(\mathrm{C}_{2}\right), 38.27$ and $37.15\left(\mathrm{NMe}_{2}\right), 35.40\left(\mathrm{C}_{3}\right), 27.87$ $\left(\mathrm{CH}_{3}\right)$; MS (EI), m / z 165.1142, calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} 165.1154$.
(R)- $\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-3-formyl-3-methyl-4-pentynamide (B6). The olefin B5 $(41.3 \mathrm{~g}, 0.25 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and ozone was bubbled into the solution through a glass tube at $-78^{\circ} \mathrm{C}$ until no starting material was detected by TLC ($\sim 10 \mathrm{~h}$). The reaction mixture was swept with N_{2} for 1 h and then dimethyl sulfide (100 mL) was added. The mixture was allowed to warm up to $25^{\circ} \mathrm{C}$ and stirred overnight. After washing with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine (50 mL), the solution was dried and the solvents were removed (VRE). Distillation of the residue afforded oily colorless aldehyde B6 ($35.0 \mathrm{~g}, 84 \%$): bp $100-102^{\circ} \mathrm{C} / 0.5$ torr; $\left.[\alpha]^{25}{ }_{\mathrm{D}}-39.68^{\circ},[\alpha]^{25}{ }_{435}-96.37^{\circ}(c) 11.97, \mathrm{CHCl}_{3}\right)$; IR (film) 3270 (s, $\mathrm{HC} \equiv$), 2820 and $2720(\boldsymbol{w}, \mathrm{CHO}), 2110(\mathrm{C} \equiv \mathrm{C}$), 1730 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$, aldehyde), $1640 \mathrm{~cm}^{-1}\left(\mathrm{~s}, \mathrm{C}=\mathrm{O}\right.$, amide); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.41$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}$), 2.36 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 2.93 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{CH}_{2}+$ NMe), 3.02 (s, $3 \mathrm{H}, \mathrm{NMe}$), 9.76 (s, $1 \mathrm{H}, \mathrm{CHO}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 198.32 (CHO), $169.05\left(\mathrm{C}_{1}\right), 84.55\left(\mathrm{C}_{4}\right), 72.58\left(\mathrm{C}_{5}\right), 43.76\left(\mathrm{C}_{3}\right), 43.31$ $\left(\mathrm{C}_{2}\right), 37.51$ and $35.40\left(\mathrm{NMe}_{2}\right), 22.47\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{EI}), m / z 138.0918$ ($\mathrm{M}^{+}-29$), calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}\left(\mathrm{M}^{+}-\mathrm{CHO}\right) 138.0918$.
(\boldsymbol{R})- $\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-3-(formylmethyl)-3-methyl-4-pentynamide (B7). The mixture of the aldehyde B6 ($83.6 \mathrm{~g}, 0.5 \mathrm{~mol}$), 2-propanol (1 L), nitromethane ($100 \mathrm{~mL}, 1.75 \mathrm{~mol}$), and $K F(14.5 \mathrm{~g}, 0.25 \mathrm{~mol})$ was stirred at $25^{\circ} \mathrm{C}$ for 1 day. After removing the solvent by rotary evaporation, water (250 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 500 \mathrm{~mL})$. The combined organic layer was washed with brine (250 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated (VRE) to give the crude nitro alcohol ($111.7 \mathrm{~g}, 98 \%$) as a viscous orange oil.

It was dissolved in ethyl acetate (1 L), and methanesulfonyl chloride $(68.7 \mathrm{~g}, 0.6 \mathrm{~mol})$ was added all at once at $0^{\circ} \mathrm{C}$. Then triethylamine (101 $\mathrm{g}, 1 \mathrm{~mol}$) was added under stirring over 20 min at $0^{\circ} \mathrm{C}$, and stirring at that temperature was continued for 2 h . After $2 \mathrm{~N} \mathrm{HCl}(250 \mathrm{~mL})$ was added, the water layer was extracted with EtOAc ($2 \times 250 \mathrm{~mL}$), and the organic layers were washed with concentrated $\mathrm{Na}_{2} \mathrm{CO}_{3}(250 \mathrm{~mL})$ and brine (100 mL). Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent (VRE) gave the crude nitro olefin B7a ($101.0 \mathrm{~g}, 96 \%$) which was used without further purification for the next step. To a solution of the nitro olefin B7a (101 g) in ethanol (500 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(18.9 \mathrm{~g}, 0.5$ mol) over 20 min . After stirring for 2 h at $0^{\circ} \mathrm{C}$, the alcohol was removed (VRE) and $2 \mathrm{~N} \mathrm{HCl}(500 \mathrm{~mL})$ was added carefully under cooling. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$ and the extracts were washed with brine (250 mL). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed (VRE) to give the crude nitro compound $\mathrm{B} 7 \mathrm{~b}(89 \mathrm{~g}, 84 \%)$ which was dissolved in $\mathrm{MeOH}(250 \mathrm{~mL})$ and added at $0^{\circ} \mathrm{C}$ to a solution of sodium methoxide $(11.5 \mathrm{~g}$ of dissolved Na , $0.5 \mathrm{~mol})$ in $\mathrm{MeOH}(250 \mathrm{~mL})$ over 15 min and the mixture was stirred for 0.5 h . This nitronate solution was added under stirring over 0.5 h to a $-40^{\circ} \mathrm{C}$ mixture of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL}$) and MeOH (500
mL). During the addition, the mixture was kept at $-40^{\circ} \mathrm{C}$ and after additional stirring at $-20^{\circ} \mathrm{C}$ for 1 h , it was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~L})$. The organic layer was washed with cold water (1 L) and the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed (VRE) to afford the crude dimethyl acetal ($70.5 \mathrm{~g}, 62 \%$).
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}(500 \mathrm{~mL})$ were added, and the mixture was stirred for 1 day at $25^{\circ} \mathrm{C}$. Then the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 250 \mathrm{~mL})$, and all three organic layers were washed with brine (100 mL), combined, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed by rotary evaporation and the residue chromatographed on silica (EtOAc-hexane 1:1) to afford the pure aldehyde B7 ($22.5 \mathrm{~g}, 25 \%$ overall from B6) as a colorless oil: $[\alpha]^{25} \mathrm{D}+7.21^{\circ},[\alpha]^{25}{ }_{435}$ $+14.15^{\circ}$ (neat); IR (film) 3260 (m, $\mathrm{HC} \equiv$), 1715 (s, $\mathrm{C}=\mathrm{O}$, aldehyde), $1635 \mathrm{~cm}^{-1}\left(\mathrm{~s}, \mathrm{C}=\mathrm{O}\right.$, amide); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 2.61$ and $2.69\left(\mathrm{AB}, J_{\mathrm{AB}}=15\right.$, each 1 H , $\left.\mathrm{CH}_{2} \mathrm{CON}\right), 2.70$ and $2.95\left(\mathrm{ABX}, J_{\mathrm{AB}}=16, J_{\mathrm{AX}}=J_{\mathrm{BX}}=2\right.$, each 1 H , $\mathrm{CH}_{2} \mathrm{CHO}$), 2.95 and 3.06 (s, each $3 \mathrm{H}, \mathrm{NMe}_{2}$), $9.89(\mathrm{t}, J=2,1 \mathrm{H}$, $\left.\mathrm{CHO}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right) ~ \delta ~ 201.44(\mathrm{CHO}), 169.52\left(\mathrm{C}_{1}\right), 88.13\left(\mathrm{C}_{4}\right)$, $70.73\left(\mathrm{C}_{5}\right), 52.54(\mathrm{CCHO}), 42.33\left(\mathrm{C}_{2}\right), 37.95$ and $35.43\left(\mathrm{NMe}_{2}\right), 31.19$ $\left(\mathrm{C}_{3}\right), 28.12\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{EI}) m / z \quad 153.1155\left(\mathrm{M}^{+}-28\right)$, calcd for $\mathrm{C}_{9}-$ $\mathrm{H}_{15} \mathrm{NO}\left(\mathrm{M}^{+}-\mathrm{CO}\right) 153.1155$.

MethyI (4R/S,5S)-5-[(Dimethylcarbamoyl)methyl]-4-formyl-5-methyl-6-heptynoate (B8). The mixture of the aldehyde B7 (18.1 g, 0.1 mol) and pyrrolidine ($10.7 \mathrm{~g}, 0.15 \mathrm{~mol}$) in benzene (200 mL) was refluxed for 1 h with continuous removal of $\mathrm{H}_{2} \mathrm{O}$ by a Dean-Stark trap. The benzene and the excess pyrrolidine were evaporated (VRE) to give the crude enamine which was dissolved in acetonitrile (200 mL). After the addition of methyl acrylate ($17.2 \mathrm{~g}, 0.2 \mathrm{~mol}$), the mixture was refluxed for 8 h and cooled, and $50 \% \mathrm{AcOH}(100 \mathrm{~mL})$ was added. The mixture was then refluxed again for 0.5 h , cooled, and poured into icewater (500 mL). After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, the combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(2 \times 100$ mL) and brine (100 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed (VRE) and the residue chromatographed on silica (EtOAchexane $2: 1$) to give pure oily ester $\mathbf{B 8}(21.5 \mathrm{~g}, 80 \%)$ as a $1: 1$ diastereomeric mixture: IR (film) 3270 ($\mathrm{m}, \mathrm{HC}=$), 1735 ($\mathrm{C}=\mathrm{O}$, ester), 1720 ($\mathrm{C}=\mathrm{O}$, aldehyde), $1640 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$, amide); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.43$ and $1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.80-2.95(\mathrm{~m}, 7 \mathrm{H}), 2.33$ and $2.35(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{HC} \equiv \mathrm{C}$), $2.96,3.04,3.06\left(3 \mathrm{~s}\right.$, total $6 \mathrm{H}, \mathrm{NMe}_{2}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 9.88 and 9.91 (d, $J=3,1 \mathrm{H}, \mathrm{CHO}$); MS (EI), $m / z 252.1244\left(\mathrm{M}^{+}-15\right)$, calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 252.1236$.

Oxime B1 α and $\operatorname{B1} \beta$. The aldehyde $\mathbf{B 8}(13.36 \mathrm{~g}, 50 \mathrm{mmol}, 1: 1 \mathrm{mix}-$ ture of diastereomers) in pyridine (10 mL) was added all at once to an ice-cold solution of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}(4.34 \mathrm{~g}, 62.5 \mathrm{mmol})$ in pyridine (40 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at $25^{\circ} \mathrm{C}$ oyernight. It was added to ice-cold $4 \mathrm{~N} \mathrm{HCl}(150 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The extract was washed with 2 N HCl , saturated NaHCO_{3}, and brine (50 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent (VRE) afforded the crude oxime B1 ($13.1 \mathrm{~g}, 93 \%$) which was a $1: 1$ mixture of diastereomers with a syn/anti-oxime ratio of $1: 3$ (by ${ }^{1} \mathrm{H}$ NMR).

The extremely viscous B1 was dissolved in ether (130 mL) and the oxime crystallized at $-10^{\circ} \mathrm{C}$. Two additional recrystallizations from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ yielded the anti-oxime $\mathrm{B} 1 \alpha(3.94 \mathrm{~g}, 56 \%)$ as a pure diastereomer: $\mathrm{mp} \mathrm{114-115}{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+45.46^{\circ},[\alpha]^{25}{ }_{435}+90.22$ (c 5.35 , CHCl_{3}); IR (KBr) 3400-3220 (s, OH), $3210(\mathrm{~s}, \mathrm{HC} \equiv), 2100(\mathrm{w}, \mathrm{C} \equiv$ $\mathrm{C}), 1735(\mathrm{C}=\mathrm{O}$, ester $), 1685(\mathrm{w}, \mathrm{C}=\mathrm{N}), 1615 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O}$, a mide $)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.75-2.75(\mathrm{~m}, 7 \mathrm{H}), 2.25(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 2.95 and 3.03 (s, each $3 \mathrm{H}, \mathrm{NMe}_{2}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $7.41(\mathrm{~d}, J=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 173.67(\mathrm{C}=\mathrm{O}$, ester), $170.00(\mathrm{C}=\mathrm{O}$, a mide), $152.03(\mathrm{C}=\mathrm{N}), 86.95$ $(\mathrm{HC} \equiv \mathrm{C}), 71.66(\mathrm{HC} \equiv), 51.65\left(\mathrm{OCH}_{3}\right), 47.56,41.24,38.40,36.52$, 35.62, 31.95, 24.96, 23.01; MS (EI), $m / z 265.1549$ ($\mathbf{M}^{+}-17$), calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{OH}\right) 265.1553$. The X-ray structure which shows the absolute configuration of $\mathrm{B} 1 \alpha$ is plotted in Figure $1 .{ }^{19}$

The mother liquors of $\mathrm{B} 1 \alpha$ were evaporated and redissolved in 10 part $\mathrm{Et}_{2} \mathrm{O}$, and the oxime $\mathrm{B} 1 \beta$ was crystallized at $-10^{\circ} \mathrm{C}$. Two additional recrystallizations from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ yielded the anti-oxime $\mathrm{B} 1 \beta$ (3.67 $\mathrm{g}, 52 \%$) as a pure diastereomer ($>95 \%$ anti-oxime by ${ }^{1} \mathrm{H}$ NMR): mp $82-83{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+13.70^{\circ},[\alpha]^{25}{ }_{435}+27.62^{\circ}\left(\mathrm{c} 3.70, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.70-2.80(\mathrm{~m}, 7 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{HC} \equiv \mathrm{C}$), 2.96 and 3.06 (s, each $3 \mathrm{H}, \mathrm{NMe}_{2}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 7.37$ $(\mathrm{d}, J=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.77$ ($\mathrm{C}=\mathrm{O}$, ester), $169.88(\mathrm{C}=\mathrm{O}$, amide), $151.71(\mathrm{C}=\mathrm{N}), 87.43(\mathrm{HC} \equiv \mathrm{C})$,

[^7]$71.44(\mathrm{HC} \equiv), 51.61\left(\mathrm{CH}_{3} \mathrm{O}\right), 47.11,41.02,38.37,36.64,35.62,31.98$ 24.67, 23.56.

Methyl (R)-3-Methyl-3-vinyl-4-pentynoate (D2). Acetyl chloride (25 $\mathrm{mL})$ and methanol $(500 \mathrm{~mL})$ were mixed together at $0^{\circ} \mathrm{C}$, and then the $(+)$-acid B4R ($69.1 \mathrm{~g}, 0.5 \mathrm{~mol}$) was added. After the mixture was stirred at $25^{\circ} \mathrm{C}$ overnight, the methanol was removed (VRE) and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (500 mL). The solution was washed with $\mathrm{H}_{2} \mathrm{O}$, concentrated NaHCO_{3}, and brine (100 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by rotary evaporation, the residue was distilled under reduced pressure to give the pure methyl ester D2 ($71.5 \mathrm{~g}, 94 \%$) as a colorless liquid: bp 79-80 ${ }^{\circ} \mathrm{C} / 25$ torr; $[\alpha]^{25} \mathrm{D}+20.9^{\circ},[\alpha]^{25}{ }_{435}$ $+43.1^{\circ}\left(\mathrm{c} 10.90, \mathrm{CHCl}_{3}\right)$; IR (film) $3300(\mathrm{~m}, \mathrm{HC} \equiv), 1735(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $1635 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 2.36$ (s, $1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), $2.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 5.11$ (dd, $\left.J_{1}=10, J_{2}=1, \mathrm{H}_{\mathrm{a}}\right), 5.43\left(\mathrm{dd}, J_{1}=17, J_{2}=1, \mathrm{H}_{\mathrm{b}}\right), 5.87\left(\mathrm{dd}, J_{1}=17\right.$, $\left.J_{2}=10, \mathrm{H}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.47\left(\mathrm{C}_{1}\right), 141.30$ and $113.81(\mathrm{C}=\mathrm{C}), 86.44\left(\mathrm{C}_{4}\right), 71.75\left(\mathrm{C}_{5}\right), 51.44\left(\mathrm{CH}_{3} \mathrm{O}\right), 46.00\left(\mathrm{C}_{2}\right)$, $36.60\left(\mathrm{C}_{3}\right), 27.57\left(\mathrm{CH}_{3}\right)$; MS (EI), $m / z 152.0834$, calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ 152.0838 .

Methyl (S)-3-Formyl-3-methyl-4-pentynoate (7). The mixture of the olefin D2 $(0.91 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1(15 \mathrm{~mL})$ was ozonized at $-78^{\circ} \mathrm{C}$ until the blue appeared and then swept with N_{2} for 0.5 h. After the addition of $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{P}(2 \mathrm{~mL})$, the mixture was allowed to warm up to $25^{\circ} \mathrm{C}$ and stirred overnight. Evaporation of the solvents and chromatography of the residue on silica with EtOAc-hexane 1:4 afforded $0.79 \mathrm{~g}(85 \%)$ of acetylenic aldehyde 7: $[\alpha]^{25}{ }_{\mathrm{D}}+2.6^{\circ},[\alpha]^{25}{ }_{435}-2.0^{\circ}(c$ $6.10, \mathrm{CHCl}_{3}$); IR (film) $3280(\mathrm{~m}, \mathrm{HC} \equiv), 1735 \mathrm{~cm}^{-1}$ (s, CHO and $\mathrm{CO}_{2} \mathrm{Me}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C})$, 2.76 and $2.86\left(\mathrm{AB}, J_{\mathrm{AB}}=16\right.$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 9.64$ (s, $1 \mathrm{H}, \mathrm{CHO}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 197.20,170.23,82.70,73.99,51.90$ 43.99, 41.46, 21.86; MS (EI), $m / z 142.0633\left(\mathrm{M}^{+}-12\right)$, calcd for C_{7} $\mathrm{H}_{10} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{C}\right) 142.0630$.
(S)-2-Ethynyl-2-methylsuccinic Acid 4-Methyl Ester (8). To the aldehyde $7(0.77 \mathrm{~g}, 5 \mathrm{mmol})$ in acetone (12.5 mL) Jones reagent was added dropwise at $25^{\circ} \mathrm{C}$ until the orange remained for 0.5 h . The acetone was decanted and the green salt washed with acetone ($2 \times 5 \mathrm{~mL}$). After evaporation of the combined organic layers, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. Evaporation of the solvent and chromatography on silica with EtOAc-hexane 2:3 afforded $0.52 \mathrm{~g}(61 \%)$ of acid 8: $[\alpha]^{25}{ }_{\mathrm{D}}+19.0^{\circ},[\alpha]^{25}{ }_{435}+36.45^{\circ}(c 4.90$, CHCl_{3}); IR (film) 3600-2600 (br, $\mathrm{CO}_{2} \mathrm{H}$), $3280(\mathrm{~m}, \mathrm{HC} \equiv), 1735(\mathrm{~s}$ $\mathrm{C}=\mathrm{O}$, ester), $1715 \mathrm{~cm}^{-1}\left(\mathrm{~s}, \mathrm{C}=\mathrm{O}\right.$, acid); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.62$ (s $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 2.87$ and $2.93\left(\mathrm{AB}, J_{\mathrm{AB}}=16.4\right.$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.66,170.23$ 83.07, 71.80, 51.81, 43.41, 39.95, 25.43; MS (EI), $m / z 170.0589\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4} 170.0579$.
(R)-2-Ethyl-2-methylsuccinic Acid (10). The acetylenic acid 8 (0.26 $\mathrm{g}, 1.5 \mathrm{mmol})$ in $\mathrm{MeOH}(7.5 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}$ at 1 atm until the theoretical amount of H_{2} was consumed. The catalyst was filtered off, and the methanol was evaporated to give the crude ester 9 which was used without purification for the next step. $\mathrm{NaOH}(2 \mathrm{~N})$ (7.5 mL) was added, and the mixture was stirred at $25^{\circ} \mathrm{C}$ overnight. The solution was then acidified with 2 N HCl and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. Evaporation of the solvent (VRE) and chromatography of the residue on silica (EtOAc-hexane $2: 1$) afforded $0.20 \mathrm{~g}(84 \%)$ diacid 10. Crystallization from benzene-cyclohexane gave 0.16 g of optically active 2-ethyl-2-methylsuccinic acid: mp $63-64{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{D}+5.6^{\circ}$ (c 5.40, CHCl_{3}); [lit..$^{9}(S)$-acid $\left.\mathrm{mp} 64.6-65.4^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}-5.9^{\circ}\right)$; IR, ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR were identical with those of an authentic sample.
(R)-3-Methyl-3-vinyl-4-pentyn-1-ol (D3). At $0^{\circ} \mathrm{C}$, the ester D2 (68.5 $\mathrm{g}, 0.45 \mathrm{~mol}$) was added to a suspension of LAH ($17.1 \mathrm{~g}, 0.45 \mathrm{~mol}$) in absolute ether (450 mL) under stirring over 0.5 h . The reaction mixture was now refluxed for 2 h and then cooled below $0^{\circ} \mathrm{C}$ with dry iceacetone. $\mathrm{HCl}(6 \mathrm{~N})(350 \mathrm{~mL})$ was added at a rate that the temperature did not exceed $5^{\circ} \mathrm{C}$ and then the ether layer was separated. The aqueous layer was extracted with ether ($2 \times 200 \mathrm{~mL}$), and the combined organic layers were washed with 100 mL of $\mathrm{H}_{2} \mathrm{O}$, concentrated NaHCO_{3}, and brine. After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporation of the ether (VRE), distillation of the residue afforded the alcohol D3 ($52.4 \mathrm{~g}, 94 \%$): bp 92 ${ }^{\circ} \mathrm{C} / 25$ torr; $[\alpha]^{25}{ }_{\mathrm{D}}+14.8^{\circ},[\alpha]^{25}{ }_{435}+28.6^{\circ}\left(c 10.13, \mathrm{CHCl}_{3}\right)$; IR (film) 3325 (br, OH), 3300 (s, HC =), 3085 ($\mathbf{w}, \mathrm{HC=}$), 2110 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{C}$), 1640 $\mathrm{cm}^{-1}(\mathrm{~m}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65-1.95(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 3.78(\mathrm{t}, J=6.5$ $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.10\left(\mathrm{dd}, J_{1}=10, J_{2}=1.4, \mathrm{H}_{\mathrm{a}}\right), 5.43\left(\mathrm{dd}, J_{1}=17, J_{2}=\right.$ $\left.1.4, \mathrm{H}_{\mathrm{b}}\right), 5.72\left(\mathrm{dd}, J_{1}=17, J_{2}=10, \mathrm{H}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.52,113.60(\mathrm{C}=\mathrm{C}), 87.39\left(\mathrm{C}_{4}\right), 72.42\left(\mathrm{C}_{5}\right), 60.07\left(\mathrm{C}_{1}\right)$ $44.02\left(\mathrm{C}_{2}\right), 37.17\left(\mathrm{C}_{3}\right), 28.76\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{EI}), m / z$ 124.0887, calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O} 124.0888$.
(\boldsymbol{R})-4-Methyl-4-vinyl-5-hexynonitrile (D4). p-Toluenesulfonyl chloride $(95.4 \mathrm{~g}, 0.5 \mathrm{~mol})$ was added in portions to the alcohol D3 (49.7 g ,
$0.4 \mathrm{~mol})$ in pyridine (200 mL) at $0^{\circ} \mathrm{C}$. After stirring at $25^{\circ} \mathrm{C}$ overnight, ice (40 g) was added and the mixture stirred for 0.5 h . Then 6 N HCl (500 mL) was added under cooling and the aqueous layer was extracted with ether ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with 100 mL of 2 N HCl , concentrated NaHCO_{3}, and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent afforded the oily tosylate (111.5 $\mathrm{g}, 100 \%$) which was dissolved in $\mathrm{Me}_{2} \mathrm{SO}$ (400 mL , dried over CaH_{2} at $120^{\circ} \mathrm{C}$ for 2 h and then distilled at 20 torr). $\mathrm{NaCN}(39.2 \mathrm{~g}, 0.8 \mathrm{~mol}$, dried for 2 days at $90^{\circ} \mathrm{C}$ under high vacuum) was added and the mixture stirred at $90^{\circ} \mathrm{C}$ for 2 h . The dark-brown reaction mixture was cooled and poured into ice-water (800 g). The aqueous layer was extracted with ether ($4 \times 200 \mathrm{~mL}$), and the combined ether layers were washed with brine $(2 \times 50 \mathrm{~mL})$. After drying (NaSO_{4}), the solvent was evaporated (VRE) and the residue distilled to afford the colorless liquid nitrile D4: bp 98-99 ${ }^{\circ} \mathrm{C} / 20$ torr; $[\alpha]^{25} \mathrm{D}+38.9^{\circ},[\alpha]^{25}{ }_{435}+79.5^{\circ}$ (c 9.42, CHCl_{3}); IR (film) 3290 (s, HC \equiv), $3080(\mathrm{w}, \mathrm{HC}=), 2240(\mathrm{~m}, \mathrm{C} \equiv \mathrm{N}), 2100(\mathrm{w}$, $\mathrm{C} \equiv \mathrm{C}), 1635 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.70-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.25-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.39(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{HC} \equiv \mathrm{C}), 5.18\left(\mathrm{dd}, J_{\mathrm{BX}}=9.5, J_{\mathrm{AX}}=1.8, \mathrm{H}_{\mathrm{X}}\right), 5.44$ and $5.60\left(\mathrm{ABX}, J_{\mathrm{AB}}\right.$ $=16.9, J_{\mathrm{AX}}=1.8, J_{\mathrm{BX}}=9.5, \mathrm{H}_{\mathrm{A}}$ and $\left.\mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{\mathrm{B}}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{X}}\right),{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 140.44(-\mathrm{CH}=), 119.74\left(\mathrm{C}_{1}\right), 115.61\left(\mathrm{H}_{2} \mathrm{C}=\right), 85.22\left(\mathrm{C}_{5}\right)$, $73.54\left(\mathrm{C}_{6}\right), 38.69\left(\mathrm{C}_{4}\right), 37.09\left(\mathrm{C}_{3}\right), 28.18\left(\mathrm{CH}_{3}\right), 13.46\left(\mathrm{C}_{2}\right)$; MS (EI), m / z 133.0871, calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N} 133.0892$.
(S)-4-Formyl-4-methyl-5-hexynonitrile (D5). The olefin D4 (66.6 g , 0.5 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1000 \mathrm{~mL})$ was ozonized at $-78^{\circ} \mathrm{C}$ until a light-blue color was detected ($\sim 10 \mathrm{~h}$). The reaction mixture was swept with N_{2} for 1 h , and then $\mathrm{Me}_{2} \mathrm{~S}(200 \mathrm{~mL})$ was added. The mixture was allowed to come to $25^{\circ} \mathrm{C}$ and stirred overnight. After washing with $\mathrm{H}_{2} \mathrm{O}(2 \times$ $200 \mathrm{~mL})$ and brine (100 mL), the solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent (VRE) and distillation of the residue afforded the colorless liquid aldehyde D5 ($52.7 \mathrm{~g}, 78 \%$): bp $65-67^{\circ} \mathrm{C} / 0.5$ torr; $[\alpha]^{25} \mathrm{D}$ $-93.8^{\circ},[\alpha]^{25}{ }_{435}-243.6^{\circ}$ (c 14.12, CHCl_{3}); IR (film) 3280 (s, $\mathrm{HC} \equiv$), 2800 and 2720 (w, CHO), $2250(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1730 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78-1.98$ and $2.10-2.30(\mathrm{~m}$, each $1 \mathrm{H}, \mathrm{CH}_{2}$), $2.45-2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 9.47$ (s, $1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 196.38(\mathrm{C}=\mathrm{O}), 119.06\left(\mathrm{C}_{1}\right), 80.95$ $\left(\mathrm{C}_{5}\right), 76.16\left(\mathrm{C}_{6}\right), 46.28\left(\mathrm{C}_{4}\right), 30.90\left(\mathrm{CH}_{3}\right), 21.71\left(\mathrm{C}_{3}\right), 13.28\left(\mathrm{C}_{2}\right)$; MS (EI), $m / z 107.0732\left(\mathrm{M}^{+}-28\right)$, calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\left(\mathrm{M}^{+}-\mathrm{CO}\right) 107.0735$.

Methyl (R)-4-(2-Cyanoethyl)-4-methylhex-2(E)-en-5-ynoate (D6). In a three-necked flask with a mechanical stirrer, $50 \% \mathrm{NaH}$ oil dispersion $(26.4 \mathrm{~g}, 0.55 \mathrm{~mol})$ was washed with pentane $(3 \times 100 \mathrm{~mL})$, and dry DME (250 mL) was added. To this NaH suspension trimethylphosphonoacetate ($100.2 \mathrm{~g}, 0.55 \mathrm{~mol}$) in DME (125 mL) was added over 0.5 h at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h , the aldehyde $\mathbf{D 5}$ ($67.6 \mathrm{~g}, 0.5 \mathrm{~mol}$) in DME (125 mL) was added at a rate that the temperature did not exceed $30^{\circ} \mathrm{C}$ and then the mixture was stirred for 4 h at $25^{\circ} \mathrm{C}$ (meanwhile the initially insoluble salt gradually dissolved and the mixture turned brown). The reaction mixture was poured into ether (2.5 L) and extracted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(250 \mathrm{~mL})$ and brine $(3 \times 250 \mathrm{~mL})$. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the ether evaporated (VRE), and the residue chromatographed on silica (EtOAc-hexane 1:5) to give the oily ester D6 ($60.9 \mathrm{~g}, 64 \%$): $[\alpha]^{25} \mathrm{D}+13.3^{\circ},[\alpha]^{25}{ }_{435}+28.1^{\circ}\left(c 8.80, \mathrm{CHCl}_{3}\right.$); IR (film) 3280 (s, HC \equiv), $2240(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1725(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1650 \mathrm{~cm}^{-1}(\mathrm{~m}$, $\mathrm{C}=\mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80-2.10(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.20-2.65 (m, 2 H, $\mathrm{CH}_{2} \mathrm{CN}$), $2.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 3.76 (s, 3 $\mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 6.22 and $6.67(\mathrm{~d}, J=15.5$, each $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.37\left(\mathrm{C}_{1}\right), 149.34\left(\mathrm{C}_{3}\right), 122.20\left(\mathrm{C}_{2}\right), 119.13(\mathrm{CN}), 83.71$ $\left(\mathrm{C}_{5}\right), 74.62\left(\mathrm{C}_{6}\right), 51.79\left(\mathrm{CH}_{3} \mathrm{O}\right), 38.18\left(\mathrm{C}_{4}\right), 36.76\left(\mathrm{CH}_{2}\right), 27.66\left(\mathrm{CH}_{3}\right)$, $13.60\left(\mathrm{CH}_{2} \mathrm{CN}\right)$; MS (EI), $m / z 176.0714\left(\mathrm{M}^{+}-15\right)$, calcd for $\mathrm{C}_{10^{-}}$ $\mathrm{H}_{10} \mathrm{NO}_{2}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 176.0712$.

Methyl ($3 R, 4 R$)-4-(2-Cyanoethyl)-4-methyl-3-(nitromethyl)-5-hexynoate (D7 \boldsymbol{D}). The mixture of the α, β-unsaturated ester $\mathbf{D 6}(9.6 \mathrm{~g}, 50$ mmol), tetramethylguanidine ($2.30 \mathrm{~g}, 20 \mathrm{mmol}$), and nitromethane (20 $\mathrm{mL}, 0.375 \mathrm{~mol}$) was stirred at $25^{\circ} \mathrm{C}$ for 6 days. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$, washed with $2 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$ and brine (25 mL), and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). After evaporation of the solvent (VRE), the residue was chromatographed on silica (EtOAc-hexane 1:3) to give the nitro ester $\mathbf{D 7}(8.0 \mathrm{~g}, 63 \%)$ as a mixture of two diastereomers (D7 $\beta / D 7 \alpha \simeq 2: 1$ by ${ }^{1} \mathrm{H}$ NMR).

The viscous oily D7 was dissolved in ether (40 mL) and cooled to -20 ${ }^{\circ} \mathrm{C}$ for 2 days to afford the pure crystalline diastereomer $\mathrm{D} 7 \beta$ (4.01 g , $50 \%): \mathrm{mp} 46-48^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-6.4^{\circ},[\alpha]^{25}{ }_{435}-24.4^{\circ}\left(\mathrm{c} 9.40, \mathrm{CHCl}_{3}\right)$; IR (film) $3280(\mathrm{~m}, \mathrm{HC} \equiv), 2240(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1735(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1555 \mathrm{~cm}^{-1}$ $\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.70-2.10(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), $2.40-2.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right)$, 2.85-3.05 (m, $1 \mathrm{H}, \mathrm{CH}$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.48 and 4.76 (ABX, J_{AB} $=13.6, J_{\mathrm{Ax}}=7.7, J_{\mathrm{BX}}=4.2$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 171.66\left(\mathrm{~s}, \mathrm{C}_{1}\right), 119.19(\mathrm{~s}, \mathrm{CN}), 84.49\left(\mathrm{~d}, \mathrm{C}_{5}\right), 76.93\left(\mathrm{t}, \mathrm{C}-\mathrm{NO}_{2}\right), 74.19$ (d, $\left.\mathrm{C}_{6}\right), 52.28\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{O}\right), 41.05\left(\mathrm{~d}, \mathrm{C}_{3}\right), 37.67\left(\mathrm{~s}, \mathrm{C}_{4}\right), 34.44\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 33.23 ($\mathrm{t}, \mathrm{C}-\mathrm{CO}$), $22.59\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.28(\mathrm{t}, \mathrm{C}-\mathrm{CN})$; MS (EI), m / z
$221.0924\left(\mathrm{M}^{+}-31\right)$, calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right) 221.0927$. (R)-4-[(R)-3-Cyano-1-ethynyl-1-methylpropylf-2-pyrrolidinone (D88). To a mixture of concentrated $\mathrm{HCl}(40 \mathrm{~mL})$ and methanol (40 mL) were added at the same time at $0^{\circ} \mathrm{C}$ the nitro ester D7 $\beta(5.1 \mathrm{~g}, 20 \mathrm{mmol})$ in methanol (20 mL) and Zn powder ($13.1 \mathrm{~g}, 0.2 \mathrm{~mol}$) dropwise and in small portions, respectively, over 0.5 h . After the addition, the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 0.5 h and then filtered and treated with $6 \mathrm{~N} \mathrm{NaOH}(400 \mathrm{~mL})$. The clear solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 200 \mathrm{~mL}$), and the combined extracts were washed with brine (20 $\mathrm{mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and crystallization of the residue from benzene (10 parts) gave the pure lactam D8 β (2.86 g, 75\%): $\mathrm{mp} 115-117^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+40.2^{\circ},[\alpha]^{25}{ }_{435}+82.2^{\circ}$ (c 2.72, CHCl_{3}); IR (KBr) 3260 (s, $\mathrm{HC} \equiv$), 2240 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{N}$), 1710 and 1670 $\mathrm{cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.95(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.25-2.73 (m, $5 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}$ and $\mathrm{CH}_{2} \mathrm{CN}$), $2.33(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{HC} \equiv \mathrm{C}$), $3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (CD$\left.\mathrm{Cl}_{3}\right) \delta 177.20(\mathrm{C}=\mathrm{O}), 119.45(\mathrm{CN}), 84.46$ and $74.22(\mathrm{C} \equiv \mathrm{C}), 44.37$ 43.83, 37.87, 34.89, 32.72, 23.67, 13.22; MS (EI), $m / z 175.0870$ (M^{+} - 15), calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 175.0872$.
(S)-4-[(R)-3-Cyano-1-ethynyl-1-methylpropyl]-2-pyrrolidinone (D8 α). The mother liquor of D7 $\beta 5.1 \mathrm{~g}, 20 \mathrm{mmol}$, diastereomeric ration D7B/ D7 $\alpha \simeq 1: 2$ by ${ }^{1} \mathrm{H}$ NMR) was treated as described for D8 β to afford 2.70 g of crude lactam as a diastereomeric mixture. The major diastereomer D8 α was isolated by two crystallizations from benzene (the compound was dissolved in 50 parts benzene and the solution was concentrated to half of its volume by distilling off benzene) to give pure colorless D8 α ($1.41 \mathrm{~g}, 37 \%$). A third crystallization afforded suitable crystals for an X-ray structure which is shown in Figure $1:{ }^{19} \mathrm{mp} 157-158^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}$ $+6.7^{\circ},[\alpha]^{25}{ }_{435}+9.9^{\circ}\left(c 5.25, \mathrm{CHCl}_{3}\right)$; IR (KBr) $3250(\mathrm{~s}, \mathrm{HC} \equiv), 3225$ (m, NH), $2250(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1690$ and $1665 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.79$ and 1.82-2.02 (m, each 1 H , CH_{2}), 2.25-2.73 (m, 5 H, CHCH2 CO and $\mathrm{CH}_{2} \mathrm{CN}$), $2.33(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{HC} \equiv \mathrm{C}$), $3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (CD$\left.\mathrm{Cl}_{3}\right) \delta 177.31(\mathrm{C}=\mathrm{O}), 119.51(\mathrm{CN}), 84.34,74.37,44.31,44.02,37.95$, 35.52, 32.92, 23.13, 13.17
(3 R , 4R)-3-(Aminoethyl)-4-(2-cyanoethyl)-4-methyl-5-hexynoic Acid (D1 β). The mixture of the lactam D8 $\beta(0.95 \mathrm{~g}, 5 \mathrm{mmol})$ and 1 N HCl (25 mL) was refluxed for 2 h . After the mixture cooled down to $25^{\circ} \mathrm{C}$ D8 β ($0.47 \mathrm{~g}, 49 \%$) was recovered by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ mL). After neutralizing the water layer with $1 \mathrm{~N} \mathrm{NaOH}(25 \mathrm{~mL}, \mathrm{pH}$ $\simeq 7$), the water was removed by rotary evaporation on the high vacuum at $25^{\circ} \mathrm{C}$. Addition of benzene (100 mL) and evaporation (VRE) afforded a crystalline residue which was extracted 3 tims under stirring with absolute ethanol (25 mL) at $25^{\circ} \mathrm{C}$ for 1 h . The combined, filtered extracts were concentrated at $25^{\circ} \mathrm{C}$ (VRE) to about 5 mL and the amino acid crystallized at $-20^{\circ} \mathrm{C}$ to give colorless D1 $\beta(0.23 \mathrm{~g}, 44 \%$): mp $122-124^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-28.4^{\circ},[\alpha]^{25}{ }_{435}-58.7^{\circ}$ (c $2.5, \mathrm{Me}_{2} \mathrm{SO}$); IR (KBr) 3250 (s, HC \equiv), 3200-2400 ($\mathrm{NH}_{2}, \mathrm{OH}$), $2240(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1605 \mathrm{~cm}^{-1}$ $(\mathrm{s}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75-2.76(\mathrm{~m}, 7 \mathrm{H})$, $2.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 3.00$ and $3.48\left(\mathrm{ABX}, J_{\mathrm{AB}}=13, J_{\mathrm{AX}}=8, J_{\mathrm{BX}}=\right.$ 3, each $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 4.75 ($\mathrm{s}, \sim 4 \mathrm{H}, \mathrm{HOD}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 183.09$ (s, C_{1}), 124.61 (s, CN), 89.73 (s, C_{5}), 76.51 (d, C_{6}), 45.07 (t, $\mathrm{CH}_{2} \mathrm{~N}$), $44.21\left(\mathrm{~d}, \mathrm{C}_{3}\right), 40.25\left(\mathrm{~s}, \mathrm{C}_{4}\right), 40.03\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.13\left(\mathrm{t}, \mathrm{C}_{2}\right), 24.10\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 15.51 (t, $\mathrm{CH}_{2} \mathrm{CN}$); MS (EI), $m / z 175.0879$ ($\mathrm{M}^{+}-33$), calcd for $\mathrm{C}_{10^{-}}$ $\mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right) 175.0872$ (MS shows the same pattern as for the lactam D8B).
(3S,4R)-3-(Aminomethyl)-4-(2-cyanoethyl)-4-methyl-5-hexynoic Acid (D1 α). The lactam D8 $\alpha(0.95 \mathrm{~g}, 5 \mathrm{mmol}$) was treated and worked up as described for compound D1 β to afford the crystalline amino acid D1 α ($0.22 \mathrm{~g}, 42 \%$): $\mathrm{mp} 135-137^{\circ} \mathrm{C}$; IR (KBr) 3270 (m, $\mathrm{HC} \equiv$), 3200-2400 $\left(\mathrm{NH}_{2}, \mathrm{OH}\right), 2240(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1560 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{br}, \mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75-2.80(\mathrm{~m}, 7 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 3.00$ and $3.43\left(\mathrm{ABX}, J_{\mathrm{AB}}=13, J_{\mathrm{AX}}=8, J_{\mathrm{BX}}=3\right.$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.72(\mathrm{~s}$, $\sim 18 \mathrm{H}, \mathrm{HDO}$).
(R)-4-[(R)-3-Cyano-1-ethynyl-1-methylpropyl]-1-hydroxy-2pyrrolidinone (D9). To the nitro ester D8 $8(2.52 \mathrm{~g}, 10 \mathrm{mmol}$) and Zn powder ($3.9 \mathrm{~g}, 60 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL}) 4 \mathrm{~N} \mathrm{HCl}$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added under stirring over 0.5 h at $0^{\circ} \mathrm{C}$. The Zn was filtered off and washed with MeOH (5 mL). After evaporation of the MeOH (VRE), $\mathrm{H}_{2} \mathrm{O}$ (10 mL) was added to the residue and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed by rotary evaporation. Crystallization from $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ yielded the colorless hydroxamic acid $\mathbf{D 9}(1.61 \mathrm{~g}, 78 \%)$: mp $120-122{ }^{\circ} \mathrm{C},[\alpha]^{25}{ }_{\mathrm{D}}-17.6^{\circ},[\alpha]^{25}{ }_{435}-36.4^{\circ}\left(c 10.00, \mathrm{CHCl}_{3}\right)$; IR (KBr) $3400(\mathrm{br}, \mathrm{OH}), 3260(\mathrm{~s}, \mathrm{HC} \equiv), 2220(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1660 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35$ (s, $1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 2.35-2.75 (m, 5 H, $\mathrm{CH}_{2} \mathrm{CN}$ and $\mathrm{CHCH}_{2} \mathrm{CO}$), 3.68 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $10.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.27$ $(\mathrm{C}=\mathrm{O}), 119.35(\mathrm{C} \equiv \mathrm{N}), 84.08$ and $74.53(\mathrm{C} \equiv \mathrm{C}), 50.98,38.27,37.86$, $34.73,31.08,23.05,13.25 ;$ MS (EI), $m / z 206.1052$, calcd for $\mathrm{C}_{11} \mathrm{H}_{14}-$
$\mathrm{N}_{2} \mathrm{O}_{2}$ 206.1056. Anal.: C, 64.06; H, 6.85; N, 13.47\%. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 64.06; H, 6.84; N, 13.58%.

Ethyl 2-Cyano-3,3-dimethyl-4-pentynoate (C4). To 2.5 L of ethanol in a $5-\mathrm{L}$ three-necked flask fitted with a reflux condenser, mechanical stirrer, and drying tube, Li wire ($34.7 \mathrm{~g}, 5 \mathrm{~mol}$) was added in portions at a rate that maintained gentle boiling. After all the Li was dissolved, the suspension was cooled to about $40^{\circ} \mathrm{C}$, ethyl cyanoacetate $(566 \mathrm{~g}, 5$ mol) was added, and the clear solution was cooled to $25^{\circ} \mathrm{C}$ while stirring. Meanwhile, a saturated solution of CuCl in hot concentrated HCl was prepared and diluted with 5 vol of $\mathrm{H}_{2} \mathrm{O}$. The aqueous solutions were decanted from the white precipitate of CuCl which was rinsed twice with $\mathrm{H}_{2} \mathrm{O}$ and then several times with absolute ethanol. The slurry of CuCl in $\mathrm{EtOH}(2.5 \mathrm{~mL})$ and Cu powder (1.0 g) was added to the Li salt solution and then 3-chloro-3-methyl-1-butyne (C3) ${ }^{5}(256 \mathrm{~g}, 2.5 \mathrm{~mol})$ was added over 2 h at $30^{\circ} \mathrm{C}$ (cooling). After additional stirring at room temperature for 2 h , the reaction mixture was poured into $1 \mathrm{~N} \mathrm{HCl}(5$ L) and extracted with ether ($3 \times 500 \mathrm{~mL}$). The extracts were then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$, concentrated NaHCO_{3}, and brine (250 $\mathrm{mL})$. The combined ether layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was removed (VRE), and the residue was distilled through a Vigreux column to afford the cyano ester C4 ($246 \mathrm{~g}, 55 \%$): bp $61-62^{\circ} \mathrm{C} / 0.3$ torr; the ${ }^{1} \mathrm{H}$ NMR and IR spectra of this product were identical with those previously reported; ${ }^{16}{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) $\delta 164.04(\mathrm{C}=\mathrm{O}), 114.91$, (CN), $85.88\left(\mathrm{C}_{4}\right), 71.81\left(\mathrm{C}_{5}\right), 62.79\left(\mathrm{OCH}_{2}\right), 48.64\left(\mathrm{C}_{2}\right), 34.00\left(\mathrm{C}_{3}\right), 27.61$ and $27.10\left(2 \times \mathrm{CH}_{3}\right), 14.05\left(\mathrm{CH}_{3} \mathrm{C}-\mathrm{O}\right) ; \mathrm{MS}(\mathrm{EI}), m / z 150.0550\left(\mathrm{M}^{+}-29\right)$, calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}_{2}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$.

Methyl 5,5-Dimethyl-4-formyl-6-heptynoate (C7). The mixture of 3,3-dimethyl-4-pentynal (C6) ${ }^{16}(121.2 \mathrm{~g}, 1.1 \mathrm{~mol})$ and pyrrolidine (117.3 $\mathrm{g}, 1.65 \mathrm{~mol}$) in benzene (1.1 L) was refluxed for 2 h with continuous removal of $\mathrm{H}_{2} \mathrm{O}$ by a Dean-Stark trap. The benzene and the excess pyrrolidine were removed by rotary evaporation to give the crude enamine ($184 \mathrm{~g}, 102 \%$) which was dissolved in acetonitrile (1.1 L). After the addition of methyl acrylate ($189.5 \mathrm{~g}, 2.2 \mathrm{~mol}$), the mixture was refluxed for 10 h and cooled, and $50 \% \mathrm{AcOH}(550 \mathrm{~mL})$ was added. The mixture was then refluxed again for 0.5 h , cooled, and poured into ice-water (2.2 L). After the extraction with ether ($3 \times 500 \mathrm{~mL}$), the combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$ and brine (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent (VRE) and distillation of the residue afforded the ester C7 ($176.5 \mathrm{~g}, 82 \%$): bp 80-82 ${ }^{\circ} \mathrm{C} / 0.4$ torr; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 204.15$ (CHO), $173.17\left(\mathrm{C}_{1}\right), 88.18$ $\left(\mathrm{C}_{6}\right), 70.82\left(\mathrm{C}_{7}\right), 59.44,51.59\left(\mathrm{CH}_{3} \mathrm{O}\right), 32.06,31.64,27.84$ and 27.21 $\left(2 \times \mathrm{CH}_{3}\right), 20.34 ;{ }^{1} \mathrm{H}$ NMR, IR, and MS spectra were identical with those previously reported. ${ }^{3}$

Acetylenic Oxime C1. The aldehyde $\mathrm{C} 7(172.7 \mathrm{~g}, 0.88 \mathrm{~mol})$ in pyridine (180 mL) was added all at once to an ice-cold solution of HON$\mathrm{H}_{2} \cdot \mathrm{HCl}(76.5 \mathrm{~g}, 1.1 \mathrm{~mol})$ in pyridine $(700 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at $25^{\circ} \mathrm{C}$ overnight. After the addition of $4 \mathrm{~N} \mathrm{HCl}(3.5 \mathrm{~L})$, the aqueous layer was extracted with ether $(3 \times 500 \mathrm{~mL})$. The combined extracts were washed with 2 N HCl , saturated NaHCO_{3}, and brine (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent (VRE) yielded the crude aldoxime Cl (180.5 g, 97\%) which was used without further purification for the next step: IR (film) 3400 (br, OH), 3280 (s, $\mathrm{HC} \equiv$), 2100 (w, $\mathrm{C} \equiv \mathrm{C}$), 1735 (s, $\mathrm{C}=\mathrm{O}$), $1720 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21$ and $1.28(\mathrm{~s}$, each 3 H , $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.65-2.50\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C})$, 3.67 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 6.72 (d, $J=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}, 10 \%$ syn-oxime), 7.35 (d, $J=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}, 90 \%$ anti-oxime), 8.54 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$); MS (EI), $m / z 196.0972\left(\mathrm{M}^{+}-15\right)$, calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 196.0974$.

Oxime of 5,5-Dimethyl-4-formyl-6-heptynoic Acid (C8). The crude ester $\mathrm{C} 1(137.3 \mathrm{~g}, 0.65 \mathrm{~mol})$ was dissolved in a solution of $\mathrm{NaOH}(64$ $\mathrm{g}, 1.6 \mathrm{~mol})$ in ethanol (2 L) and $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$. After stirring overnight at $25^{\circ} \mathrm{C}$, the alcohol was removed by rotary evaporation, and the aqueous layer was extracted with ether ($2 \times 100 \mathrm{~mL}$) and then acidified with $4 \mathrm{~N} \mathrm{HCl}(650 \mathrm{~mL})$. The acid was extracted with ether (3×300 mL) and the combined extracts were washed with brine (100 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent afforded the crude acid $\mathrm{C8}$ ($122.5 \mathrm{~g}, 96 \%$) as a viscous oil: IR (film) $3500-2500(\mathrm{br}, \mathrm{OH}$ oxime and acid), 3280 (s, $\mathrm{HC} \equiv$), 2100 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{C}$), $1710 \mathrm{~cm}^{-1}$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21$ and 1.28 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$, anti-oxime), 1.22 and 1.31 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$, syn-oxime), $1.70-3.25$ (m, 5 H , $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), $2.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}), 6.76(\mathrm{~d}, J=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$, 30% syn-oxime), 7.39 (d, $J=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}, 70 \%$ anti-oxime), 8.79 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$ and NOH).

Resolution of Racemic Acid C8: Salt C9. To the crude acid C8 (122.3 $\mathrm{g}, 0.62 \mathrm{~mol}$) in ethanol (1500 mL) (-) - α-phenylethylamine ($75 \mathrm{~g}, 0.62$ mol) was added. The solution was cooled and kept at $-20^{\circ} \mathrm{C}$ for 1 day. The salt precipitate was filtered and dried and then redissolved in the minimum amount of refluxing ethanol ($\sim 10-15 \mathrm{~mL}$ per g of salt). After cooling to $-20^{\circ} \mathrm{C}$ for 1 day, fraction 2 was filtered and dried. This procedure was repeated 5 times to give fraction $7(28.1 \mathrm{~g}, 28 \%)$. The
melting point rose from $158-168^{\circ} \mathrm{C}$ (fraction 1) to $180-182^{\circ} \mathrm{C}$ (fraction 7). Further crystallizations did not improve the diastereomeric purity of the salt $\mathbf{C 9}$ (see under C 10)

Methyl (S)-4-Cyano-5,5-dimethyl-6-heptynoate (C10). The salt C9 of one fraction $(0.32 \mathrm{~g}, 1 \mathrm{mmol})$ in $2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was extracted with ether ($3 \times 10 \mathrm{~mL}$). The ether layers were washed with brine (2.5 mL) combined, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ as usual, the solvent was evaporated (VRE) and the residue dried on the high vacuum. The crude oxime ester in pyridine (3 mL) was cooled to $0^{\circ} \mathrm{C}$, and tosyl chloride ($0.29 \mathrm{~g}, 1.5 \mathrm{mmol}$) in pyridine (2 mL) was added. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 day, $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and stirring continued for 15 min . The reaction mixture was then poured into $4 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with ether (3×10 mL). The organic layers were washed with brine (2 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent (VRE), the residue was chromatographed on silica (petroleum ether-ether 3:2) and then distilled in a Kugelrohr oven to afford pure nitrile C10 ($0.17 \mathrm{~g}, 88 \%$): bp ~ 100 ${ }^{\circ} \mathrm{C} / 0.5$ torr; IR (film) $3280(\mathrm{~m}, \mathrm{HC} \equiv), 2240(\mathrm{w}, \mathrm{C}=\mathrm{N}), 1735 \mathrm{~cm}^{-1}(\mathrm{~s}$ $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.85-2.75(\mathrm{~m}, 5$ $\mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 2.27 (s, $1 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 3.71 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.64(\mathrm{C}=\mathrm{O}), 119.31(\mathrm{C} \equiv \mathrm{N}), 86.88\left(\mathrm{C}_{6}\right), 71.28$ $\left(\mathrm{C}_{7}\right), 51.84\left(\mathrm{CH}_{3} \mathrm{O}\right), 42.71,33.68,31.70,27.97,26.36,23.80$; MS (EI), m / z 193.1082, calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} 193.1103$

fraction	$[\alpha]^{25} \mathrm{D}$	$[\alpha]^{25} 435$	$c\left(\mathrm{CHCl}_{3}\right)$
4	-43.4°	-85.5°	10.80
6	-59.6°	-117.5°	7.78
7	-65.6°	-129.3°	11.07
10	-65.7°	-129.4°	8.29

Nitrile Oxide A16. NCS ($1.47 \mathrm{~g}, 11 \mathrm{mmol}$) in absolute DMF (25 mL) was added to the aldoxime A1 ($3.31 \mathrm{~g}, 10 \mathrm{mmol}$) in DMF (50 mL) at $40^{\circ} \mathrm{C}$ over 10 min . After additional stirring at $40^{\circ} \mathrm{C}$ for 1 h (after about 10 min , the mixture turned green and an exothermic reaction occurred \rightarrow cooling!), the reaction mixture was poured onto ice (200 g) and extracted with ether ($3 \times 200 \mathrm{~mL}$). The ether layers were washed with ice-cold $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and brine (50 mL) and combined. After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporation of the solvent (VRE) afforded 3.66 g (100%) of crude hydroxamoyl chloride A16a which was dissolved in ether (100 mL) and added at $0^{\circ} \mathrm{C}$ over 20 min to $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~g}, 20 \mathrm{mmol})$ in ether (100 mL). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 0.5 h and then filtered. After removal of the solvent (VRE), the residue was chroma tographed on silica (EtOAc-hexane 1:2) to afford pure oily nitrile oxide A16 ($2.49 \mathrm{~g}, 76 \%$): $[\alpha]^{25}-19.8^{\circ},[\alpha]^{25}{ }_{435}-38.9^{\circ}\left(c 6.05, \mathrm{CHCl}_{3}\right)$; IR (film) 2290 (s, CNO), $1735(\mathrm{C}=\mathrm{O}), 1375 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.26$ and $1.33\left(\mathrm{~s}\right.$, each $\left.3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.75-2.70(\mathrm{~m}, 6 \mathrm{H}, 3$ $\left.\times \mathrm{CH}_{2}\right), 3.38\left(\mathrm{dd}, J_{1}=3, J_{2}=12,1 \mathrm{H}, \mathrm{CHCNO}\right), 3.68$ and 3.71 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}$), $3.80-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 172.84$ and $171.63(\mathrm{C}=\mathrm{O}), 112.32(\mathrm{O}-\mathrm{C}-\mathrm{O}), 64.57\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ 51.81 and $51.71\left(\mathrm{CH}_{3} \mathrm{O}\right), 47.75,38.02,37.73,32.43,24.64,20.30,19.44$, the nitrile oxide (CNO) could not be observed; ${ }^{20} \mathrm{MS}$ (EI), $m / 2314.1242$ ($\mathrm{M}^{+}-15$), caled for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{7}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 314.1240$.

Isoxazole APh. The mixture of the nitrile oxide A16 ($66 \mathrm{mg}, 0.2$ mmol), phenylacetylene (0.5 mL), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 1 day. After evaporation of the solvents, the residue was chromatographed on silica with EtOAc-hexane 1:2 to give APh ($60 \mathrm{mg}, 70 \%$) reaction occurred a viscous oil: IR (film) 1735 (s, $\mathrm{C}=\mathrm{O}$), 1610, 1590 $1570 \mathrm{~cm}^{-1}\left(\mathrm{w}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and isoxazole); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21$ and 1.34 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $1.80-2.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right.$), 2.42 and 2.75 $\left(\mathrm{AB}, J_{\mathrm{AB}}=13\right.$, each $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 3.61 and 3.62 (s, each $3 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.75-4.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.43(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=$, isoxazole), $7.35-7.55$ and $7.70-7.85\left(\mathrm{~m}, 3 \mathrm{H}+2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$); MS (EI), m / z $416.1707\left(\mathrm{M}^{+}-15\right)$, calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{7}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 416.1710$.

Northem Half ABa. The oxime $\mathbf{B} 1 \alpha(1.41 \mathrm{~g}, 5 \mathrm{mmol})$ and the nitrile oxide $\mathbf{A 1 6}(3.29 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ were kept at $40^{\circ} \mathrm{C}$ for 6 days. The solvent was evaporated (VRE) and the residue chromatographed on silica with EtOAc-hexane 1:1, 4:1, and then 100\% EtOAc to afford $\mathrm{AB} \alpha(2.88 \mathrm{~g}, 94 \%)$ as an amorphous foam (1.40 g of A16 was recovered): $[\alpha]^{25}{ }_{\mathrm{D}}-3.9^{\circ},[\alpha]^{25}{ }_{435}-6.5^{\circ}\left(c 3.25, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $3500-3200$ (br, OH), 1730 (s, $\mathrm{C}=\mathrm{O}$, ester), 1635 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$, amide) $1590 \mathrm{~cm}^{-1}\left(\mathrm{w}, \mathrm{C}=\mathrm{C}\right.$, isoxazole); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.12$ and 1.31 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$, ring A), $1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, ring B), $1.60-3.20(\mathrm{~m}$, $14 \mathrm{H}, 6 \times \mathrm{CH}_{2}+2 \times \mathrm{CH}$, ring $\mathrm{A}+\mathrm{B}$), 2.83 and 2.89 (s, each 3 H , NMe_{2}), 3.62, 3.64 and 3.66 (s, each $3 \mathrm{H}, 3 \times \mathrm{CH}_{3} \mathrm{O}$), 3.70-4.10 (m, 4 $\left.\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, isoxazole), $7.20(\mathrm{~d}, J=9,1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}$, anti-oxime) $8.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 175.81$
($\mathrm{C}-\mathrm{O}$), isox.), 173.99, 173.52 and 173.51 ($3 \times \mathrm{C}=\mathrm{O}$, ester), 169.52 ($\mathrm{C}=\mathrm{O}$, amide), $163.84(\mathrm{C}=\mathrm{N}$, isox.), $150.95(\mathrm{C}=\mathrm{N}$, oxime); 113.35 $(\mathrm{O}-\mathrm{C}-\mathrm{O}), 102.94\left(\mathrm{CH}\right.$, isox.), 64.92 and $63.07\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 51.61$ and $51.36\left(3 \times \mathrm{CH}_{3} \mathrm{O}\right), 48.17,47.72,43.16,41.56,40.19,37.73,36.23$, 35.46, 32.43, 31.89, 24.61, 22.54, 21.51, 19.92, 18.90; MS (EI), m / z 611.3044, calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{11} 611.3056$.

Northern Half $A B \beta$. The procedure was the same as for the isoxazole $\mathrm{AB} \alpha$ using the oxime $\mathrm{B} 1 \beta$ instead to yield $\mathrm{AB} \beta(2.94 \mathrm{~g}, 96 \%)$: $[\alpha]^{25} \mathrm{D}$ $+20.1^{\circ},[\alpha]^{25}{ }_{435}+41.8^{\circ}\left(c 5.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.15$ and $1.30\left(\mathrm{~s}\right.$, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$, ring A$), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, ring B), $1.60-3.20\left(\mathrm{~m}, 14 \mathrm{H}, 6 \times \mathrm{CH}_{2}+2 \times \mathrm{CH}\right.$, ring $\left.\mathrm{A}+\mathrm{B}\right), 2.83$ and 2.91 (s, each $3 \mathrm{H}, \mathrm{NMe}_{2}$), 3.608, 3.629, and 3.634 (s, each $3 \mathrm{H}, 3 \times \mathrm{CH}_{3} \mathrm{O}$), 3.70-4.10 (m, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $5.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, isox.), $7.29(\mathrm{~d}, \mathrm{~J}$ $=9,1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$, anti-oxime), $8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 175.78,173.83,173.26,172.91,169.75,164.19,150.34,113.35,103.29$, $64.89,63.17,51.58,51.49,51.23,48.13,47.69,43.06,41.62,40.67,37.76$, $36.64,35.53,32.27,32.05,24.80,23.30,21.51,19.44,19.02 ;$ MS and IR are identical with those of $A B \alpha$

Disoxazole ABPho. t - $\mathrm{BuOCl}\left(22 \mathrm{mg}, 0.2 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of $\mathrm{AB} \alpha(122 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0.5 \mathrm{~mL}\right.$) over 20 min . After additional stirring at $-78^{\circ} \mathrm{C}$ for 1 h (the greenish color faded), $\mathrm{Et}_{3} \mathrm{~N}$ ($40 \mathrm{mg}, 0.4 \mathrm{mmol}$) in phenylacetylene (0.5 mL) was added at $-78^{\circ} \mathrm{C}$ over 0.5 h and stirring was continued at that temperature for 1 h . The cooling bath was removed and the mixture warmed up to $25^{\circ} \mathrm{C}$. The reaction was kept at room temperature overnight, and the solvents were then removed by rotary evaporation. Chromatography on silica with EtOAc-hexane $4: 1$ yielded pure foamy ABPh ${ }^{(89 \mathrm{mg}, 63 \%}$): IR (film) 1735 (s, $\mathrm{C}=\mathrm{O}$, ester), 1640 (s, $\mathrm{C}=\mathrm{O}$, amide), 1590 (w, $\mathrm{C}==\mathrm{C}$, isox.), $1570 \mathrm{~cm}^{-1}\left(\mathrm{w}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.08$ and 1.27 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$, ring A), $1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, ring B), $1.70-3.20\left(\mathrm{~m}, 14 \mathrm{H}, 6 \times \mathrm{CH}_{2}+2 \times \mathrm{CH}\right.$, ring $\left.\mathrm{A}+\mathrm{B}\right), 2.84$ and 2.89 (s, each $3 \mathrm{H}, \mathrm{NMe}_{2}$), 3.52, 3.58 and 3.63 (s, each $3 \mathrm{H}, 3 \times \mathrm{CH}_{3} \mathrm{O}$), $3.70-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.85$ and 6.14 (s, each $1 \mathrm{H}, 2 \times \mathrm{CH}$, isox.), $7.45-7.55$ and $7.75-7.85\left(\mathrm{~m}, 3 \mathrm{H}+2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 175.78,173.61,173.35,172.68,169.68,169.63,164.19$, $163.59,130.10,128.89^{*}, 127.29,125.79^{*}$ (*superimposed $\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5}$), 113.31, 102.97, 99.78, 64.76, 63.20, 51.58, 51.36, 51.17, 48.07, 45.68, $42.80,42.13,41.69,40.22,37.67,36.84,35.46,32.14$ (2 superimposed C), 24.87, 24.10, 21.51, 21.10, 18.99; MS (EI), $m / z 711$, calcd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{11} 711.3369$.

Southern Half CD. The salt $\mathrm{C} 9(3.18 \mathrm{~g}, 10 \mathrm{mmol})$ in $2 \mathrm{~N} \mathrm{HCl}(20$ mL) was extracted with ether $(3 \times 50 \mathrm{~mL})$, and the ether layers were washed with brine (10 mL). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the concentrated ethereal acid solution ($\sim 25 \mathrm{~mL}$) was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether as usual to give after evaporation the ester $\mathrm{Cl} \alpha(2.10 \mathrm{~g}, 100 \%) . t-\mathrm{BuOCl}$ ($1.09 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added to the oxime $\mathrm{C} 1 \alpha$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ over 1 h . After additional stirring at that temperature for 1 h , the yellow-green solution was warmed up to $25^{\circ} \mathrm{C}$ over 20 min (the solution turned blue) and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated (VRE, $30^{\circ} \mathrm{C}$) to afford the highly viscous hydroxamoyl chloride C 11 . It was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and added under stirring to the acetylene D7 β ($10.1 \mathrm{~g}, 40 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) over 0.5 h . After reacting at $25^{\circ} \mathrm{C}$ for 2 days, the solvent was evaporated and the residue chromatographed on silica with EtOAchexane $1: 2$ and $2: 3$ to give yellow oily CD $(2.64 \mathrm{~g}, 57 \%$; the unreacted nitro ester D7 β was recovered quantitatively): $[\alpha]^{25}{ }_{D}-45.5^{\circ},[\alpha]^{25}{ }_{435}$ -96.6° (c $3.32, \mathrm{CHCl}_{3}$); IR (film) 3280 (m, $\mathrm{HC} \equiv$), 3120 ($\mathrm{w}, \mathrm{HC}=$), 2240 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{N}$), 1735 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1585 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$, isox.), $1550 \mathrm{~cm}^{-1}$ (s , $\left.\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, ring D), $1.37(\mathrm{~s}, 6 \mathrm{H}, 2$ $\times \mathrm{CH}_{3}$, ring C), $1.90-2.80\left(\mathrm{~m}, 11 \mathrm{H}, 5 \times \mathrm{CH}_{2}+\mathrm{CH}\right), 2.26(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{HC} \equiv \mathrm{C}$), 3.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$, ring D), 3.64 and 3.70 (s , each $3 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.35$ and $4.46\left(\mathrm{ABX}, J_{\mathrm{AB}}=13.7, J_{\mathrm{AX}}=4.5, J_{\mathrm{BX}}=7.3\right.$, each 1 $\mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}$), 6.33 (s, $1 \mathrm{H}, \mathrm{CH}$, isox.); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 173.26, 172.97, 171.47, $164.42(\mathrm{C}=\mathrm{N}$, isox.), $118.68(\mathrm{CN}), 102.75(\mathrm{CH}$, isox. $)$, $89.09,76.48,70.77,52.32$ and $51.61\left(\mathrm{CH}_{3} \mathrm{O}\right), 46.47,41.62(2 \mathrm{C})^{*}, 34.03$, $33.71,33.13,31.98,28.50,28.15,25.06,19.09,12.70,{ }^{*}$ DND-experiment ${ }^{21}$ shows two superimposed signals; MS (EI), $m / z 430.1968$ (M^{+} - 31), calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right)$ 430.1979; MS (FAB), m / z 462 (MH^{+}).

Triisoxazole $4 \alpha . \quad t-\mathrm{BuOCl}(0.22 \mathrm{~g}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ to $\mathrm{AB} \boldsymbol{\alpha}(1.22 \mathrm{~g}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) over 0.5 h . After additional stirring at $-78^{\circ} \mathrm{C}$ for 1 h (the azure color faded), $\mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added over 0.5 h (the light-blue turned yellow) and stirring at $-78^{\circ} \mathrm{C}$ continued for 1 h (the yellow faded). The mixture was warmed to room temperature over 15 min and then added to neat $\mathrm{CD}(3.69 \mathrm{~g}, 8 \mathrm{mmol})$. After stirring at 25
(21) DND: Delayed Noise Decoupling. Anet, F. A. L.; Jaffer, N.; Strouse, J. Abstract presented at the Experimental NMR Conference, Tallahassee, FL., 1980.
${ }^{\circ} \mathrm{C}$ for 2.5 days the solvent was removed (VRE) and the residue chromatographed on silica with benzene-pyridine $9: 1$ and $7: 1$ to afford the triisoxazole $4 \alpha(0.66 \mathrm{~g}, 31 \%)$ as an amorphous foam (the unconverted CD was recovered quantitatively). The minor impurities were removed by a second chromatography on silica with 100% EtOAc to give 0.51 g (24\%) of $4 \alpha:[\alpha]^{25}{ }_{D}-6.1^{\circ},[\alpha]^{25}{ }_{435}-16.6^{\circ}\left(c 5.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $2240(\mathrm{w}, \mathrm{C} \equiv \mathrm{N}), 1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}$, ester), 1635 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$, amide), 1585 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$, isox.) , $1550 \mathrm{~cm}^{-1}\left(\mathrm{~m}, \mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$, ring A), $1.29,1.31,1.33\left(\mathrm{~s}, 6 \mathrm{H}+3 \mathrm{H}+3 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right.$, ring $\mathrm{A}, \mathrm{C}, \mathrm{D}), 1.65$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ring B), $1.70-3.45\left(\mathrm{~m}, 26 \mathrm{H}, 11 \times \mathrm{CH}_{2}+\right.$ $4 \times \mathrm{CH}$), 2.84 and 2.92 (s , each $3 \mathrm{H}, \mathrm{NMe}_{2}$), $3.60,3.62,3.64,3.71$ (s, total $15 \mathrm{H}, 5 \times \mathrm{CH}_{3} \mathrm{O}$), $3.75-4.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.37$ and 4.45 $\left(\mathrm{ABX}, J_{\mathrm{AB}}=14, J_{\mathrm{AX}}=7.5, J_{\mathrm{BX}}=4.5\right.$, each $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}$), $5.72,5.920$, 5.925 (s, each $1 \mathrm{H}, 3 \times \mathrm{CH}$, isox.) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.82$ and 175.78 ($2 \times \mathrm{C}-\mathrm{O}$, isox.), 173.64, 173.29, 173.16, 173.00, 172.81, 171.50 ($5 \times \mathrm{C}=\mathrm{O}$ ester, $\mathrm{C}-\mathrm{O}$ isox.), $169.36(\mathrm{C}=\mathrm{O}$, amide), 164.13, 163.52, $162.95(3 \times \mathrm{C}=\mathrm{N}$, isox. $), 118.71(\mathrm{C} \equiv \mathrm{N}), 113.35(\mathrm{O}-\mathrm{C}-\mathrm{O}), 103.48$, 102.97, 101.34 ($3 \times \mathrm{CH}$, isox.), $76.57\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 64.86,63.10$ (OC$\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{O}$), $52.28,51.58$ (intense, 2C), $51.42,51.13\left(5 \times \mathrm{CH}_{3} \mathrm{O}\right), 48.07$, $46.51,45.80,43.09,41.59$ (intense, $3 \mathrm{C}^{*}, 39.90,38.94,37.60,36.52$, $35.43,33.74,33.10,32.30,32.17,32.05,25.66,24.83,24.64,24.23,23.88$, $21.90,21.77,18.93,18.80,12.70\left(\mathrm{CH}_{2} \mathrm{CN}\right) ; \mathrm{MS}$ (FAB), $m / z 1071$ $\left(\mathrm{MH}^{+}\right)$; ${ }^{*}$ two of the three superimposed peaks at $\delta 41.59$ also overlap in CD at $\delta 41.62$, the third missing signal is only visible in the diastereomer 48. Anal.: $\mathrm{C}, 58.27 ; \mathrm{H}, 6.83 ; \mathrm{N}, 7.87$. Calcd for $\mathrm{C}_{52} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}_{18}$: C , $58.31 ; \mathrm{H}, 6.96 ; \mathrm{N}, 7.85 \%$.

Triisoxazole 4β. The procedure was the same as for the triisoxazole 4α using $A B \beta$ instead to yield $4 \beta(0.53 \mathrm{~g}, 25 \%):[\alpha]^{25}{ }_{\mathrm{D}}+3.4^{\circ},[\alpha]^{25}{ }_{435}$ $+2.3^{\circ}\left(c 2.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, ring A),
1.31, 1.32, 1.34, 1.37 (s, each $3 \mathrm{H}, 4 \times \mathrm{CH}_{3}$, ring A, C, D), 1.55 (s, 3 $\mathrm{H}, \mathrm{CH}_{3}$, ring B), $1.70-3.30\left(\mathrm{~m}, 26 \mathrm{H}, 11 \times \mathrm{CH}_{2}, 4 \times \mathrm{CH}\right), 2.78$ and 2.87 (s , each $3 \mathrm{H}, \mathrm{NMe}_{2}$), 3.60, 3.62, 3.63, 3.71 (s, total $15 \mathrm{H}, 5 \times \mathrm{CH}_{3} \mathrm{O}$), 3.75-4.05 (m, $\left.4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.35$ and $4.45\left(\mathrm{ABX}, J_{\mathrm{AB}}=14, J_{\mathrm{AX}}\right.$ $=7.5, J_{\mathrm{BX}}=4.5$, each $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}$), $5.88,5.92,6.03$ (s , each $1 \mathrm{H}, 3$ $\times \mathrm{CH}$, isox.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.14$ and $175.72(2 \times \mathrm{C}-\mathrm{O}$, isox.), $173.61,173.35,173.00,172.90,172.75,171.50(5 \times \mathrm{C}=\mathrm{O}$ ester, $\mathrm{C}-\mathrm{O}$ isox. $), 169.40(\mathrm{C}=\mathrm{O}$, amide $), 164.29,163.46,162.82(3 \times \mathrm{C}=\mathrm{N}$, isox. $)$, $118.71(\mathrm{CN}), 113.38(\mathrm{O}-\mathrm{C}-\mathrm{O}), 103.48(\mathrm{br}, 2 \mathrm{C})$ and $101.50(3 \times \mathrm{CH}$, isox.), $76.45\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 64.92$ and $63.23,\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 52.25,51.61$, $51.52,51.42,51.13\left(5 \times \mathrm{CH}_{3} \mathrm{O}\right), 48.17,46.51,45.13,43.12,41.72$ (intense, 2C), $41.59,41.24,39.13,37.73,36.68,35.40,33.71,33.13,32.33$, $32.24,32.08,25.31,24.93,24.83,24.51,24.26,21.55,19.82,19.06,18.96$, $12.70\left(\mathrm{CH}_{2} \mathrm{CN}\right)$; IR and MS are identical with those of 4α.

Acknowledgment. The financial support of the National Science Foundation (NSF CHE 78-27084 and CHE 81-15444) is gratefully acknowledged. N. B. is grateful for a NATO Science Fellowship with the Natural Sciences and Engineering Research Council of Canada. A. W. and U. Z. are grateful to the Stiftung für Stipendien auf dem Gebiete der Chemie and the Swiss National Science Foundation, respectively, for a fellowship.

Supplementary Material Available: Tables of final atomic coordinates, bond lengths and angles, and anisotropic thermal parameters along with a computer generated plot with atom labels (ll pages). Ordering information is given on any current masthead page.

Single-Crystal EXAFS of Nitrogenase

A. M. Flank, ${ }^{\dagger}$ M. Weininger, ${ }^{\ddagger}$ L. E. Mortenson, ${ }^{\boldsymbol{\varepsilon}}$ and S. P. Cramer* ${ }^{\boldsymbol{\delta}}$
Contribution from the Corporate Research Science Labs, Exxon Research and Engineering Company, Annandale, New Jersey 08801, LURE Batiment 209C, 91405 Orsay, France, and the Department of Biological Chemistry, Purdue University, West Lafayette, Indiana 47907. Received November 19, 1984

Abstract

Single crystals of the nitrogenase Mo-Fe protein have been examined by polarized X-ray absorption spectroscopy. For different orientations, the Mo-Fe amplitude of the Mo K-edge EXAFS was found to change by a factor of 2.5 , whereas the Mo-S component varied by only $\pm 15 \%$. The orientation dependence of the EXAFS spectra has been used to investigate the geometry and orientation of the Mo, Fe, S clusters within the $\mathrm{Mo}-\mathrm{Fe}$ protein. This represents the first application of single-crystal EXAFS to an enzyme of unknown crystal structure. The orientation dependence for single crystals of the model compounds $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Cl}_{2} \mathrm{FeS}_{2} \mathrm{MaS}_{2} \mathrm{FeCl}_{2}\right]$ and $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{3}\left[\mathrm{Fe}_{6} \mathrm{Mo}_{2} \mathrm{~S}_{8}(\mathrm{SEt})_{9}\right]$ was also examined to quantify the experimental precision of this technique. The analysis procedures overcame the difficulty of four molybdenum sites per unit cell by using the X-ray diffraction evidence for a crystallographic 2 -fold axis and a molecular 2 -fold axis. Given initial assumptions about the symmetry of the $\mathrm{Mo}, \mathrm{Fe}, \mathrm{S}$ clusters, as well as the orientation of one cluster with respect to the crystallographic axes, it was possible to calculate the expected EXAFS orientation dependence. The patterns for linear, bent, tetrahedral, and square-pyramidal symmetries in various orientations were then compared with the experimental spectra. It was found that the experimental data were not well simulated by clusters with a linear arrangement of $\mathrm{Fe}-\mathrm{Mo}-\mathrm{Fe}$ atoms, whereas trinuclear clusters with a $\mathrm{Fe}-\mathrm{Mo}-\mathrm{Fe}$ angle between 50° and 130° gave satisfactory agreement. Tetrahedral MoFe_{3} and square-pyramidal MoFe_{4} cluster symmetries also gave satisfactory simulations of the orientation dependence. Assuming a tetrahedral Mo-Fe geometry, the preferred orientation of the 3 -fold axis of one of the $\mathrm{Mo}-\mathrm{Fe}$ clusters was found to lie at an angle of $75 \pm 10^{\circ}$ from the crystallographic a axis and 215 ± 10 or $285 \pm 10^{\circ}$ from the b axis.

Most of the nitrogen fixation on earth is accomplished through the catalytic action of the enzyme nitrogenase. ${ }^{1}$ This enzyme consists of two proteins, the Fe protein and the Mo-Fe protein. The Mo-Fe protein is an $\alpha_{2} \beta_{2}$ tetramer with a molecular weight of 220000 that contains 2 molybdenums, 28-32 irons, ${ }^{2,3}$ and approximately 30 acid labile sulfides. ${ }^{4}$ An unusual molybde-num-iron-sulfur cluster, the iron-molybdenum cofactor or

[^8]"FeMo-co", is thought to be at the catalytic site of this complex. ${ }^{2}$ The first technique that revealed information about the molybdenum site in nitrogenase was X-ray absorption spectroscopy. ${ }^{5,6}$
(1) "Current Perspectives in Nitrogen Fixation"; Gibson, A. H., Newton, W. E., Eds.; Australian Academy of Sciences: Canberra, 1981.
(2) Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 3249-3253.
(3) Burgess, B. K.; Jacobs, D. R.; Stiefel, E. I. Biochim. Biophys. Acta 1980, 614, 196-209.
(4) Orme-Johnson, W. H.; Davis, L. C. "Iron-Sulfur Proteins"; Lovenberg, W., Eds.; Academic Press: New York, 1977; p 15.

[^0]: * Author to whom correspondence should be addressed: Cellulose Attisholz AG, CH-4708 Luterbach, Switzerland. Reprints can also be obtained from Prof. Michael E. Jung, UCLA.
 ${ }^{\dagger}$ Deceased March 9, 1984.
 ${ }^{\ddagger}$ Department of Chemistry, Brown University, Providence, RI 02912.

[^1]: (1) Cf.: (a) Stevens, R. V.; Lapalme, R.; Fitzpatrick, J. M.; Germeraad, P. B.; Harrison, B. L. J. Am. Chem. Soc. 1976, 98, 6313. (b) Stevens, R. V.; Cherpeck, R. E.; Harrison, B. L.; Lai, J.; Lapalme, R. Ibid. 1976, $98,6317$. (c) Stevens, R. V. Tetrahedron 1976, 32, 1599. (d) Stevens, R. V. "Vitamin B-12. Proceedings of the Third European Symposium on Vitamin B-12 and Intrinsic Factors"; Zagalak, B.; Friedrich, W., Ed.; W. de Gryter: Berlin, 1979 and references cited therein.

[^2]: (2) Eschenmoser, A. Naturwissenschaften 1974, 61, 513 and references cited therein.
 (3) Stevens, R. V.; Chang, J. H.; Lapalme, R.; Schow, S.; Schlageter, M. G.; Shapiro, R.; Weller, H. N. J. Am. Chem. Soc. 1983, 105, 7719 and references cited therein.
 (4) Quotation from R. V. Stevens' NSF proposal, Fall 1983.
 (5) Kipping, F. S.; Pope, W. J. J. Chem. Soc. 1893, 63, 549, $577,593$.
 (6) Meyer, W. L.; Lobo, A. P.; McCarty, R. N. J. Org. Chem. 1967, 32, 1754. Finch, A. M. T., Jr.; Vaughan, W. R. J. Am. Chem. Soc. 1961, 91, 416. Joshi, G. C.; Warnhoff, E. W. J. Org. Chem. 1972, 37, 2383. Corey, E. J.; Ohno, M.; Chow, S. W.; Scherrer, R. A. J. Am. Chem. Soc. 1959, 81, 6304. Eck, C. R.; Mills, R. W.; Money, T. J. Chem. Soc., Perkin Trans. I 1975, 251. Eck, C. R.; Hodgson, G. L.; McSweeney, D. F.; Mills, R. W.; Money, T. Ibid. 1974, 1938.
 (7) Tranhanovsky, W. S.; Fox, N. S. J. Am. Chem. Soc. 1974, 96, 7968 and references cited therein.

[^3]: (9) Porath, J. Ark. Kemi 1951, 3, 163

[^4]: (11) Woodward, R. B. Pure Appl. Chem. 1968, 17, 519; 1971, 25, 283; 1973, 33,145 and references cited therein.
 (12) For an account of this monumental achievement, see: Stevens, R. V. "Vitamin B-12"; Dolphin, D., Ed.; Wiley: New York, 1982; Vol. 1, Chapter 6.
 (13) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
 (14) Pollini, G. P.; Barco, A.; De Giuli, G. Synthesis 1972, 44.

[^5]: (15) Hennion, G. F.; Boiselle, A. P. J. Org. Chem. 1961, 26, 725.
 (16) Stevens, R. V.; Christensen, C. G.; Edmonson, W. L.; Kaplan, M. Reid, E. B.; Wentland, M. P. J. Am. Chem. Soc. 1971, $93,6629$.
 (17) Stevens, R. V.; Reid, E. B. Tetrahedron Lett. 1975, 4193.

[^6]: (18) Teeter, H. M.; Bell, E. W. "Organic Syntheses"; Wiley: New York, 1963; Collect. Vol. 4, p 125.

[^7]: (19) The final agreement factors for compounds B1 α and D8 α are $R=$ 0.0558 and $R_{w}=0.0619$ and $R=0.0972$ and $R_{w}=0.0845$, respectively. Complete details of the X-ray crystal structure analyses of these two compounds can be found in the supplementary material.

[^8]: * To whom correspondence should be addressed.
 + LURE.
 ${ }^{\ddagger}$ Purdue University.
 ${ }^{8}$ Exxon Research.

